Journal of the American Chemical Society
Page 10 of 12
Metal-Organic Frameworks for Broad-Scope Asymmetric
Catalysis. J. Am. Chem. Soc. 2014, 136, 5213−5216.
Reaction between Enamides and Thiazolones. Org. Lett. 2016, 18,
2521–2523.
1
2
3
4
5
6
7
8
(18) Tan, C. X.; Han, X.; Li, Z. J.; Liu, Y.; Cui, Y. Controlled
Exchange of Achiral Linkers with Chiral Linkers in Zr-Based
UiO-68 Metal-Organic Framework. J. Am. Chem. Soc. 2018, 140,
16229–16236.
(19) Xia, Q. C.; Li, Z. J.; Tan, C. X.; Liu, Y.; Gong, W.; Cui, Y.
Multivariate Metal-Organic Frameworks as Multifunctional
Heterogeneous Asymmetric Catalysts for Sequential Reactions. J.
Am. Chem. Soc. 2017, 139, 8259–8266.
(20) Wu, C. D.; Hu, A. G.; Zhang, L.; Lin, W. B. A Homochiral
Porous Metal-Organic Framework for Highly Enantioselective
Heterogeneous Asymmetric Catalysis. J. Am. Chem. Soc. 2005,
127, 8940−8941.
(35) Kang, Q.; Zhao, Z. A.; You, S. L. Highly Enantioselective
Friedel-Crafts Reaction of Indoles with Imines by a Chiral
Phosphoric Acid. J. Am. Chem. Soc. 2007, 129, 1484–1485.
(36) He, L.; Laurent, G.; Retailleau, P.; Folléas, B.; Brayer, J. L.;
Masson, G. Highly Enantioselective Aza-Diels-Alder Reaction of
1-Azadienes with Enecarbamates Catalyzed by Chiral Phosphoric
Acids. Angew. Chem. Int. Ed. 2013, 52, 11088 –11091.
(37) Huang, D.; Xu, F. X.; Lin, X. F.; Wang, Y. G. Highly
Enantioselective Pictet-Spengler Reaction Catalyzed by SPINOL
Phosphoric Acids. Chem. Eur. J. 2012, 18, 3148–3152.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(38) Xie, J. H.; Zhou, Q. L. Magical Chiral Spiro Ligands. Acta
Chim. Sinica. 2014, 72, 778–797.
(21) Cho, S. H.; Ma, B. Q.; Nguyen, S. T.; Hupp, J. T.;
Albrecht-Schmitt, T. E. A Metal-Organic Framework Material
that Functions as an Enantioselective Catalyst for Olefin
Epoxidation. Chem. Commun. 2006, 2563–2565.
(22) Dang, D. B.; Wu, P. Y.; He, C.; Xie, Z.; Duan, C. Y.
Homochiral Metal-Organic Frameworks for Heterogeneous
Asymmetric Catalysis. J. Am. Chem. Soc. 2010, 132, 14321–
14323.
(23) Gedrich, K.; Heitbaum, M.; Notzon, A.; Senkovska, I.;
Fröhlich, R.; Getzschmann, J.; Mueller, U.; Glorius, F.; Kaskel, S.
A Family of Chiral Metal-Organic Frameworks. Chem. Eur. J.
2011, 17, 2099–2106.
(24) Jeong, K. S.; Go, Y. B.; Shin, S.; Lee, S. M.; Kim, J.; Yaghi,
O. M.; Jeong, N. Asymmetric Catalytic Reactions by NbO-Type
Chiral Metal-Organic Frameworks. Chem. Sci. 2011, 2, 877−882.
(25) Tanaka, K.; Sakuragi, K.; Ozaki, H.; Takada, Y. Highly
Enantioselective Friedel-Crafts Alkylation of N,N-dialkylanilines
(39) Huang, Y. B.; Liang, J.; Wang, X. S.; Cao, R.
Multifunctional Metal-Organic Framework Catalysts: Synergistic
Catalysis and Tandem Reactions. Chem. Soc. Rev. 2017, 46, 126–
157.
(40) Cao. C. C.; Chen, C. X.; Wei, Z. W.; Qiu, Q. F.; Zhu, N. X.;
Xiong, Y. Y.; Jiang, J. J.; Wang, D. W.; Su, C. Y. Catalysis
through Dynamic Spacer Installation of Multivariate
Functionalities in Metal-Organic Frameworks. J. Am. Chem. Soc.
2019, 141, 2589–2593.
(41) Wei, Z. W.; Gu, Z. Y.; Arvapally, R. K.; Chen, Y. P.; Jr. R.
N. M.; Lvy, J. F.; Yakovenko, A. A.; Feng, D. W.; Omary, M. A.;
Zhou, H. C. Rigidifying Fluorescent Linkers by Metal-Organic
Framework Formation for Fluorescence Blue Shift and Quantum
Yield Enhancement. J. Am. Chem. Soc. 2014, 136, 8269–8276.
(42) Mondloch, J. E.; Bury, W.; Fairen-Jimenez, D.; Kwon, S.;
DeMarco, E. J.; Weston, M. H.; Sarjeant, A. A.; Nguyen, S. T.;
Stair, P. C.; Snurr, R. Q.; Farha, O. M.; Hupp, J. T. Vapor-Phase
Metalation by Atomic Layer Deposition in a Metal-Organic
Framework. J. Am. Chem. Soc. 2013, 135, 10294–10297.
(43) Kalidindi, S. B.; Nayak, S.; Briggs, M. E.; Jansat, S.;
Katsoulidis, A. P.; Miller, G. J.; Warren, J. E.; Antypov, D.; Corà,
F.; Slater, B.; Prestly, M. R.; Martí-Gastaldo, C.; Rosseinsky, M.
J. Chemical and Structural Stability of Zirconium-based
Metal-Organic Frameworks with Large Three-Dimensional Pores
by Linker Engineering. Angew. Chem. Int. Ed. 2015, 54, 221–226.
(44) He, Y. B.; Zhang, Z. J.; Xiang, S. C.; Fronczek, F. R.;
with Trans-ß-nitrostyrene Catalyzed by
a
Homochiral
Metal-Organic Framework. Chem. Commun. 2018, 54,
6328−6331.
(26) Zhang, Z. X.; Ji, Y. R.; Wojtas, L.; Gao, W. Y.; Ma, S. Q.;
Zaworotko, M. J.; Antilla, J. C. Two Homochiral Organocatalytic
Metal Organic Materials with Nanoscopic Channels. Chem.
Commun. 2013, 49, 7693–7695.
(27) Lun, D. J.; Waterhouse, G. I. N.; Telfer, S. G. A General
Thermolabile Protecting Group Strategy for Organocatalytic
Metal-Organic Frameworks. J. Am. Chem. Soc. 2011, 133,
5806−5809.
(28) Ingleson, M. J.; Barrio, J. P.; Bacsa, J.; Dickinson, C.; Park,
H.; Rosseinsky, M. J. Generation of a Solid Brønsted Acid Site in
a Chiral Framework. Chem. Commun. 2008, 1287–1289.
(29) Zheng, M.; Liu, Y.; Wang, C.; Liu, S. B.; Lin, W. B.
Krishna, R.; Chen, B. L.
A Microporous Metal-Organic
Framework for Highly Selective Separation of Acetylene,
Ethylene, and Ethane from Methane at Room Temperature. Chem.
Eur. J. 2012, 18, 613–619.
(45) Wang, H.; Dong, X. L.; Lin, J. Z.; Teat, S. J.; Jensen, S.;
Cure, J.; Alexandrov, E. V.; Xia, Q. B.; Tan, K.; Wang, Q. L.;
Olson, D. H.; Proserpio, D. M.; Chabal, Y. J.; Thonhauser, T.; Sun,
J. L.; Li, J. Topologically Guided Tuning of Zr-MOF Pore
Structures for Highly Selective Separation of C6 Alkane Isomers.
Nat. Commun. 2018, 9, 1745.
Cavity-Induced Enantioselectivity Reversal in
a
Chiral
Metal-Organic Framework Brønsted Acid Catalyst. Chem. Sci.
2012, 3, 2623–2627.
(30) Shimizu, G. K. H.; Vaidhyanathan, R.; Taylor, J. M.
Phosphonate and Sulfonate Metal Organic Frameworks. Chem.
Soc. Rev. 2009, 38, 1430–1449.
(31) Rhauderwiek, T.; Zhao, H. S.; Hirschle, P.; Döblinger, M.;
Bueken, B.; Reinsch, H.; Vos, D. D.; Wuttke, S.; Kolb, U.; Stock,
N. Highly Stable and Porous Porphyrin-Based Zirconium and
Hafnium Phosphonates-Electron Crystallography as an Important
Tool for Structure Elucidation. Chem. Sci. 2018, 9, 5467–5478.
(32) Zamfir, A.; Schenker, S.; Freund, M.; Tsogoeva, S. B.; Chiral
BINOL-Derived Phosphoric Acids: Privileged Brønsted Acid
Organocatalysts for C-C Bond Formation Reactions. Org. Biomol.
Chem. 2010, 8, 5262–5276.
(46) Spek, A. L. Single-Crystal Structure Validation with the
Program PLATON. J. Appl. Crystallogr. 2003, 36, 7.
(47) Furukawa, H.; Go, Y. B.; Ko, N.; Park, Y. K.; Uribe-Romo,
F. J.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Isoreticular Expansion
of Metal-Organic Frameworks with Triangular and Square
Building Units and the Lowest Calculated Density for Porous
Crystals. Inorg. Chem. 2011, 50, 9147–9152.
(48) Walling, C. The Acid Strength of Surfaces. J. Am. Chem. Soc.
1950, 72, 1164–1168.
(49) Zhou, F. T.; Yamamoto, H. A Powerful Chiral Phosphoric
Acid Catalyst for Enantioselective Mukaiyama-Mannich
Reactions. Angew. Chem. Int. Ed. 2016, 55, 8970–8974.
(50) Jeong, N. C.; Samanta, B.; Lee, C. Y.; Farha, O. M.; Hupp, J.
T. Coordination-Chemistry Control of Proton Conductivity in the
Iconic Metal-Organic Framework Material HKUST-1. J. Am.
Chem. Soc. 2012, 134, 51–54.
(33) Rahman, A.; Lin, X. F. Development and Application of
Chiral Spirocyclic Phosphoric Acids in Asymmetric Catalysis.
Org. Biomol. Chem. 2018, 16, 4753–4777.
(34) Kikuchi, J.; Momiyama, N.; Terada, M. Chiral Phosphoric
Acid Catalyzed Diastereo- and Enantioselective Mannich-Type
10
ACS Paragon Plus Environment