Journal of Medicinal Chemistry
Article
as risk factors to develop severe neuropathy in a mouse model. J.
Peripher. Nerv. Syst. 2011, 16, 199−212.
ABBREVIATIONS USED
■
DIPEA, diisopropylethylamine; DOPE-CF, 1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine-N-(carboxyfluorescein);
DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine; EPR, en-
hanced permeability and retention; IBBA, isobutylboronic acid;
mPEG2000, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanol-
amine-N-[methoxy(poly(ethylene glycol))-2000]; MM, multi-
ple myleoma; PBA, phenylboronic acid
(17) Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor
vascular permeability and the EPR effect in macromolecular
therapeutics: a review. J. Controlled Release 2000, 65, 271−284.
(18) Patricia Egusquiaguirre, S.; Igartua, M.; Maria Hernandez, R.;
Luis Pedraz, J. Nanoparticle delivery systems for cancer therapy:
advances in clinical and preclinical research. Clin. Transl. Oncol. 2012,
14, 83−93.
(19) Kiziltepe, T.; Ashley, J. D.; Stefanick, J. F.; Qi, Y. M.; Alves, N.
J.; Handlogten, M. W.; Suckow, M. A.; Navari, R. M.; Bilgicer, B.
Rationally engineered nanoparticles target multiple myeloma cells,
overcome cell-adhesion-mediated drug resistance, and show enhanced
efficacy in vivo. Blood Cancer J. 2012, 2, e64.
(20) Allen, T. M.; Cullis, P. R. Liposomal drug delivery systems: from
concept to clinical applications. Adv. Drug Delivery Rev. 2013, 65, 36−
48.
(21) Paraskar, A. S.; Soni, S.; Chin, K. T.; Chaudhuri, P.; Muto, K.
W.; Berkowitz, J.; Handlogten, M. W.; Alves, N. J.; Bilgicer, B.;
Dinulescu, D. M.; Mashelkar, R. A.; Sengupta, S. Harnessing
structure−activity relationship to engineer a cisplatin nanoparticle
for enhanced antitumor efficacy. Proc. Natl. Acad. Sci. U. S. A. 2010,
107, 12435−12440.
(22) Boulikas, T. Low toxicity and anticancer activity of a novel
liposomal cisplatin (Lipoplatin) in mouse xenografts. Oncol. Rep. 2004,
12, 3−12.
REFERENCES
■
(1) Genin, E.; Reboud-Ravaux, M.; Vidal, J. Proteasome inhibitors:
recent advances and new perspectives in medicinal chemistry. Curr.
Top. Med. Chem. 2010, 10, 232−256.
(2) Chauhan, D.; Hideshima, T.; Anderson, K. C. Proteasome
inhibition in multiple myeloma: therapeutic implication. Annu. Rev.
Pharmacol. Toxicol. 2005, 45, 465−476.
(3) Chauhan, D.; Hideshima, T.; Mitsiades, C.; Richardson, P.;
Anderson, K. Proteasome inhibitor therapy in multiple myeloma. Mol.
Cancer Ther. 2005, 4, 686−692.
(4) Almond, J. B.; Cohen, G. M. The proteasome: a novel target for
cancer chemotherapy. Leukemia 2002, 16, 433−443.
(5) Orlowski, R. Z.; Kuhn, D. J. Proteasome inhibitors in cancer
therapy: lessons from the first decade. Clin. Cancer Res. 2008, 14,
1649−1657.
(23) Gabizon, A.; Catane, R.; Uziely, B.; Kaufman, B.; Safra, T.;
Cohen, R.; Martin, F.; Huang, A.; Barenholz, Y. Prolonged circulation
time and enhanced accumulation in malignant exudates of doxorubicin
encapsulated in polyethylene-glycol coated liposomes. Cancer Res.
1994, 54, 987−992.
(6) Hideshima, T.; Mitsiades, C.; Akiyama, M.; Hayashi, T.;
Chauhan, D.; Richardson, P.; Schlossman, R.; Podar, K.; Munshi, N.
C.; Mitsiades, N.; Anderson, K. C. Molecular mechanisms mediating
antimyeloma activity of proteasome inhibitor PS-341. Blood 2003, 101,
1530−1534.
(7) Mitsiades, N.; Mitsiades, C. S.; Poulaki, V.; Chauhan, D.;
Fanourakis, G.; Gu, X. S.; Bailey, C.; Joseph, M.; Libermann, T. A.;
Treon, S. P.; Munshi, N. C.; Richardson, P. G.; Hideshima, T.;
Anderson, K. C. Molecular sequelae of proteasome inhibition in
human multiple myeloma cells. Proc. Natl. Acad. Sci. U. S. A. 2002, 99,
14374−14379.
(8) Hideshima, T.; Richardson, P.; Chauhan, D.; Palombella, V.;
Elliott, P.; Adams, J.; Anderson, K. The proteasome inhibitor PS-341
inhibits growth, induces apoptosis, and overcomes drug resistance in
human multiple myeloma cells. Cancer Res. 2001, 61, 3071−3076.
(9) Rajkumar, S.; Richardson, P.; Hideshima, T.; Anderson, K.
Proteasome inhibition as a novel therapeutic target in human cancer. J.
Clin. Oncol. 2005, 23, 630−639.
(24) Allen, T. M.; Cheng, W. W. K.; Hare, J. I.; Laginha, K. M.
Pharmacokinetics and pharmacodynamics of lipidic nano-particles in
cancer. Anti-Cancer Agents Med. Chem. 2006, 6, 513−523.
(25) Allen, T. Liposomal drug formulationsrationale for develop-
ment and what we can expect for the future. Drugs 1998, 56, 747−756.
(26) Barenholz, Y. DoxilThe first FDA-approved nano-drug:
lessons learned. J. Controlled Release 2012, 160, 117−134.
(27) Chang, H.; Yeh, M. Clinical development of liposome-based
drugs: formulation, characterization, and therapeutic efficacy. Int. J.
Nanomed. 2012, 7, 49−60.
(28) Trippier, P. C.; McGuigan, C. Boronic acids in medicinal
chemistry: anticancer, antibacterial and antiviral applications. Med-
ChemComm 2010, 1, 183−198.
(29) Hall, D. G. Structure, properties, and preparation of boronic
acid derivatives overview of their reactions and applications, in boronic
acids: preparation and applications in organic synthesis and medicine.
In Boronic Acids Preparations and Applications in Organic Synthesis and
Medicine; Hall, D. G., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA:
Weinheim, 2006; pp 1−99.
(30) Roy, C. D.; Brown, H. C. Stability of boronic estersstructural
effects on the relative rates of transesterification of 2-(phenyl)-1,3,2-
dioxaborolane. J. Organomet. Chem. 2007, 692, 784−790.
(31) Roy, C. D.; Brown, H. C. A comparative study of the relative
stability of representative chiral and achiral boronic esters employing
transesterification. Monatsh. Chem. 2007, 138, 879−887.
(32) Roush, W. R.; Walts, A. E.; Hoong, L. K. Diastereoselective and
enantioselective aldehyde addition-reactions of 2-allyl-1,3,2-dioxabor-
olane-4,5-dicarboxylic esters, a useful class of tartrate ester modified
allylboronates. J. Am. Chem. Soc. 1985, 107, 8186−8190.
(33) Bernardini, R.; Oliva, A.; Paganelli, A.; Menta, E.; Grugni, M.;
De Munari, S.; Goldoni, L. Stability of boronic esters to hydrolysis: a
comparative study. Chem. Lett. 2009, 38, 750−751.
(10) Mitsiades, N.; Mitsiades, C.; Poulaki, V.; Chauhan, D.;
Fanourakis, G.; Gu, X.; Bailey, C.; Joseph, M.; Libermann, T.;
Treon, S.; Munshi, N.; Richardson, P.; Hideshima, T.; Anderson, K.
Molecular sequelae of proteasome inhibition in human multiple
myeloma cells. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 14374−14379.
(11) Richardson, P. G.; Hideshima, T.; Anderson, K. C. Bortezomib
(PS-341): a novel, first-in-class proteasome inhibitor for the treatment
of multiple myeloma and other cancers. Cancer Control 2003, 10, 361−
369.
(12) Dick, L. R.; Fleming, P. E. Building on bortezomib: second-
generation proteasome inhibitors as anti-cancer therapy. Drug
Discovery Today 2010, 15, 243−249.
(13) Arastu-Kapur, S.; Anderl, J. L.; Kraus, M.; Parlati, F.; Shenk, K.
D.; Lee, S. J.; Muchamuel, T.; Bennett, M. K.; Driessen, C.; Ball, A. J.;
Kirk, C. J. Nonproteasomal targets of the proteasome inhibitors
bortezomib and carfilzomib: a link to clinical adverse events. Clin.
Cancer Res. 2011, 17, 2734−2743.
(14) Chen, D.; Frezza, M.; Schmitt, S.; Kanwar, J.; Dou, Q. P.
Bortezomib as the first proteasome inhibitor anticancer drug: current
status and future perspectives. Curr. Cancer Drug Targets 2011, 11,
239−253.
(15) Curran, M. P.; McKeage, K. Bortezomib a review of its use in
patients with multiple myeloma. Drugs 2009, 69, 859−888.
(16) Bruna, J.; Ale, A.; Velasco, R.; Jaramillo, J.; Navarro, X.; Udina,
E. Evaluation of pre-existing neuropathy and bortezomib retreatment
(34) Yan, J.; Springsteen, G.; Deeter, S.; Skeuse, C.; Wang, B. H. The
relationship among pKa, pH, and binding constants in the interactions
between boronic acids and diolsit is not as simple as it appears.
Tetrahedron 2004, 60, 11205−11209.
(35) Aznar, E.; Dolores Marcos, M.; Martinez-Manez, R.; Sancenon,
F.; Soto, J.; Amoros, P.; Guillem, C. pH- and photo-switched release of
J
dx.doi.org/10.1021/jm500352v | J. Med. Chem. XXXX, XXX, XXX−XXX