Journal of the American Chemical Society
Article
(4) For key biosynthetic studies, see: (a) Sulikowski, G. A.; Agnelli,
F.; Spencer, P.; Koomen, J. M.; Russell, D. H. Org. Lett. 2002, 4, 1447.
(b) Sulikowski, G. A.; Liu, W.; Agnelli, F.; Corbett, R. M.; Luo, Z.;
Hershberger, S. J. Org. Lett. 2002, 4, 1451. For a personal account of
an early total synthesis effort, see: (c) Nicolaou, K. C.; Baran, P. S.
Angew. Chem., Int. Ed. 2002, 41, 2678.
Sakaguchi, T.; Kobayashi, T.; Tsuchikawa, H.; Katsumura, S. Org. Lett.
2013, 15, 2758.
(20) Our group has long been interested in the concept of utilizing
common intermediates to access structurally diverse members of
natural product families. For an example with the resveratrol family of
polyphenols, see: (a) Snyder, S. A.; Zografos, A. L.; Lin, Y. Angew.
Chem., Int. Ed. 2007, 46, 8186. (b) Snyder, S. A.; Breazzano, S. P.;
Ross, A. G.; Lin, Y.; Zografos, A. L. J. Am. Chem. Soc. 2009, 131, 1753.
(c) Snyder, S. A.; Gollner, A.; Chiriac, M. I. Nature 2011, 474, 461.
(d) Snyder, S. A.; Wright, N. E.; Pflueger, J. J.; Breazzano, S. P. Angew.
Chem., Int. Ed. 2011, 50, 8629. (e) Snyder, S. A.; Brill, Z. G. Org. Lett.
2011, 13, 5524. (f) Snyder, S. A.; Thomas, S. B.; Meyer, A. C.;
Breazzano, S. P. Angew. Chem., Int. Ed. 2012, 51, 4080. (g) Wright, N.
E.; Snyder, S. A. Angew. Chem., Int. Ed. 2014, 53, 3409.
(21) For a recent review on cascade reactions in natural product total
synthesis, see: Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew.
Chem., Int. Ed. 2006, 45, 7134.
(22) In principle, such a species could also result without the
intermediacy of an N-oxide through alternate oxidative pathways
involving the enamine of 18.
(23) Haulotte, E.; Laurent, P.; Braekman, J.-C. Eur. J. Org. Chem.
2012, 1907.
(24) Based on existing synthetic precedent (see ref 19), the synthesis
of 14−16 constitutes a formal synthesis of their N-oxide counterparts,
19−21.
(25) (a) Duboudin, J. G.; Jousseaume, B. J. Organomet. Chem. 1979,
168, 1. (b) Naruta, Y.; Nishigaichi, Y.; Maruyama, K. J. Org. Chem.
1991, 56, 2011.
(26) Stead, D.; Carbone, G.; O’Brien, P.; Campos, K. R.; Coldham,
I.; Sanderson, A. J. Am. Chem. Soc. 2010, 132, 7260.
(27) Maruoko, K.; Shimada, I.; Imoto, H.; Yamamoto, H. Synlett
1994, 7, 519.
(28) When we attempted to forge 31 through methyl addition onto
the corresponding enone using LiMe2Cu in THF at −78 °C, we
obtained a 1:3 dr favoring the undesired methyl epimer. It was this
result that led us to investigate whether Yamamoto’s catalyst and
hydride delivery might solve this stereoselectivity challenge. For a
review on the stereoselective addition of nucleophiles to enones, see:
Howell, G. P. Org. Process Res. Dev. 2012, 16, 1258.
(29) Yu, W.; Mei, Y.; Kang, Y.; Hua, Z.; Jin, Z. Org. Lett. 2004, 6,
3217.
(30) Beshara, C. S.; Hall, A.; Jenkins, R. L.; Jones, K. L.; Jones, T. C.;
Killeen, N. M.; Taylor, P. H.; Thomas, S. P.; Tomkinson, N. C. O. Org.
Lett. 2005, 7, 5729.
(31) These isomers could be chromatographically separated, with re-
exposure of the undesired epimer to base affording a 1:1.11 mixture of
the two diastereomeric ketones. Intriguingly, use of a similar process
by Mueller for desmethyl 48 (ref 15g) afforded a much better ratio of
isomers, on the order of 9:1 in favor of the stereogeometry of the
highlighted center of 48. The hypothesized driving force for the
epimerization in that case was the ability to minimize the number of
C−C and CO eclipsing interactions; in our case, there are no
discernible elements within the two possible structures that appear to
influence their relative stabilities, hence why a nearly equimolar
mixture forms under thermodynamic conditions.
(5) (a) Snyder, S. A. Nature 2010, 465, 560. (b) Snyder, S. A.;
ElSohly, E. M.; Kontes, F. Nat. Prod. Rep. 2011, 28, 897.
(6) (a) Nicolaou, K. C.; Simonsen, K. B.; Vassilikogiannakis, G.;
Baran, P. S.; Vidali, V. P.; Pitsinos, E. N.; Couladouros, E. A. Angew.
Chem., Int. Ed. 1999, 38, 3555. (b) Barnes-Seeman, D.; Corey, E. J.
Org. Lett. 1999, 1, 1503.
(7) Swan, G. A. J. Chem. Soc., Perkin Trans. 1 1985, 1757.
(8) Razzak, M.; De Brabander, J. K. Nature: Chem. Biol. 2011, 7, 865.
(9) For a recent example in a highly complex scenario, see:
(a) Herzon, S. B.; Myers, A. G. J. Am. Chem. Soc. 2005, 127, 5342.
(b) Baran, P. S.; Guerrero, C. A.; Ambhaikar, N. B.; Hafensteiner, B.
D. Angew. Chem., Int. Ed. 2005, 44, 606. (c) Artman, G. D.; Grubbs, A.
W.; Williams, R. M. J. Am. Chem. Soc. 2007, 129, 6336.
(10) Stork, G.; Meisels, A.; Davies, J. E. J. Am. Chem. Soc. 1963, 85,
3419. For a more recent synthesis also based on this biomimetic
design, see: Mi, Y.; Schreiber, J. V.; Corey, E. J. J. Am. Chem. Soc. 2002,
124, 11290.
(11) (a) Lebsack, A. D.; Link, J. T.; Overman, L. E.; Stearns, B. A. J.
Am. Chem. Soc. 2002, 124, 9008. (b) Kim, J.; Ashenhurst, J. A.;
Movassaghi, M. Science 2009, 324, 238. (c) Herzon, S. B.; Lu, L.; Woo,
C. M.; Gholap, S. L. J. Am. Chem. Soc. 2011, 133, 7260.
(12) Boger, D. L.; Baldino, C. M. J. Am. Chem. Soc. 1993, 115, 11418.
(13) For recent reviews, see: (a) Daloze, A.; Braekman, J.-C.;
Pasteels, J. M. Chemoecology 1994/1995, 5/6, 173. (b) King, A. G.;
Meinwald, J. Chem. Rev. 1996, 96, 1105. (c) Laurent, P.; Braekman, J.-
C.; Daloze, D. Top. Curr. Chem. 2005, 240, 167.
(14) Elliott, N. C.; Kieckhefer, R. W.; Beck, D. A. Biol. Control 2000,
17, 218 and references therein.
(15) (a) Tursch, B.; Daloze, D.; Dupont, M.; Pasteels, J. M.; Tricot,
M. C. Experientia 1971, 27, 1380. (b) Karlsson, R.; Losman, D. J.
Chem. Soc., Chem. Commun. 1972, 626. (c) Tursch, B.; Daloze, D.;
Pasteels, J. M.; Cravador, A.; Braekman, J.-C.; Hootele, C.;
Zimmermann, D. Bull. Soc. Chim. Belges 1972, 81, 649. (d) Tursch,
B.; Daloze, D.; Hootele, C. Chimia 1972, 26, 74. (e) Tursch, B.;
Daloze, D.; Braekman, J.-C.; Hootele, C.; Cravador, A.; Losman, D.;
Karlsson, R. Tetrahedron Lett. 1974, 5, 409. (f) Ayer, W. A.; Bennett,
M. J.; Browne, L. M.; Purdham, J. T. Can. J. Chem. 1976, 54, 1807.
(g) Mueller, R. H.; Thompson, M. E.; DiPardo, R. M. J. Org. Chem.
1984, 49, 2217.
(16) For the isolation of this and related dimeric materials, see:
(a) Timmermans, M.; Braekman, J.-C.; Daloze, D.; Pasteels, J. M.;
Merlin, J.; Declercq, J.-P. Tetrahedron Lett. 1992, 33, 1281.
(b) McCormick, K. D.; Attygalle, A. B.; Xu, S.-C.; Svato, A.;
Meinwald, J.; Houck, M. A.; Blankespoor, C. L.; Eisner, T. Tetrahedron
1994, 50, 2365. (c) Shi, X.; Attygalle, A. B.; Meinwald, J.; Houck, M.
A.; Eisner, T. Tetrahedron 1995, 51, 8711. (d) Huang, Q.; Attygalle, A.
B.; Meinwald, J.; Houck, M. A.; Eisner, T. J. Nat. Prod. 1998, 61, 598.
(e) Laurent, P.; Braekman, J.-C.; Daloze, D.; Pasteels, J. M.
Tetrahedron Lett. 2002, 43, 7465.
(32) When ketone 47 was hydrolyzed under mild conditions (25
°C), only material of the configuration of precoccinelline about the
highlighted center was obtained; higher temperature and extended
reaction times were required to observe any 48.
(17) Schroder, F. C.; Tolasch, T. Tetrahedron 1998, 54, 12243.
̈
(18) Lebrun, B.; Braekman, J.-C.; Daloze, D.; Kalushkov, P.; Pasteels,
J. M. Tetrahedron Lett. 1999, 40, 8115.
(19) For key synthetic studies, see: (a) Ayer, W. A.; Daw, R.; Eisner,
R. A.; Furuichi, K. Can. J. Chem. 1976, 54, 473. (b) Ayer, W. A.;
Furuichi, K. Can. J. Chem. 1976, 54, 1494. (c) Stevens, R. V.; Lee, A.
W. M. J. Am. Chem. Soc. 1979, 101, 7032. (d) Yue, C.; Nicolay, J.-F.;
Royer, J.; Husson, H.-P. Tetrahedron 1994, 50, 3139. (e) Takahata, H.;
Saito, Y.; Ichinose, M. Org. Biomol. Chem. 2006, 4, 1587. (f) Gerasyuto,
A. I.; Hsung, R. P. J. Org. Chem. 2007, 72, 2476. (g) Newton, A. F.;
Rejzek, M.; Alcaraz, M.-L.; Stockman, R. A. Beilstein J. Org. Chem.
(33) Mueller’s route to ketone 48 was nine steps and racemic (ref
15g); our route is ten steps but asymmetric.
(34) For precedent for the RuO4 step, see: Irngartner, H.; Reimann,
W.; Garner, P.; Dowd, P. J. Org. Chem. 1988, 53, 3046.
(35) We believe that transition state C predominates with
pseudoaxial attack from the bottom face at C-4 in 18 based on the
noted flagpole and eclipsing interactions within D; we cannot say for
certain, however, whether this component of the analysis is correct, in
that the chiral center which would reveal that initial facial preference
has been destroyed in the final dimer (i.e., 54, “psylloborine B”).
2008, 4, 4. (h) O’Connell, K. M. G.; Díaz-Gavilan
́
, M.; Galloway, W.
R. J. D.; Spring, D. R. Beilstein J. Org. Chem. 2012, 8, 850. (i) Fujita, S.;
J
dx.doi.org/10.1021/ja5045852 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX