Organic Letters
Letter
(11) Preparation of 4a can be achieved in attenuated yield (40 − 50%)
from the corresponding oxime through a two-step, single-flask, Chan−
Lam coupling followed by the addition of 2a.
AUTHOR INFORMATION
■
Corresponding Author
(12) For examples of the preparation of azabutadienes by addition/
elimination and isomerization, see: (a) Barluenga, J.; Joglar, J.; Fustero,
S.; Gotor, V.; Krueger, C.; Romao, M. J. Chem. Ber. 1985, 118, 3652.
(b) Grigg, R.; Stevenson, P. J. Synthesis 1983, 1009.
Notes
The authors declare no competing financial interest.
(13) For examples of the preparation of 1,4-enamino ketones by
enamine additions to α-halogenated ketones, α,β-unsaturated ketones,
and 1,2-diones, see: (a) Lopez-Alvarado, P.; Garcia-Granda, S.; Alvarez-
Rua, C.; Avendano, C. Eur. J. Org. Chem. 2002, 1702. (b) Schank, K.;
Leider, R.; Lick, C.; Glock, R. Helv. Chim. Acta 2004, 87, 869.
(c) Koulouri, S.; Malamidou-Xenikaki, E.; Spyroudis, S.;
Tsanakopoulou, M. J. Org. Chem. 2005, 70, 8780. (d) Li, W.-D. Z.;
Ma, B.-C. J. Org. Chem. 2005, 70, 3277. (e) Bremner, J. B.; Samosorn, S.
Aust. J. Chem. 2003, 56, 871. (f) Shaw, K. J.; Luly, J. R.; Rapoport, H. J.
Org. Chem. 1985, 50, 4515.
ACKNOWLEDGMENTS
■
We acknowledge generous funding from ACS-PRF (DNI-
50491), NSF (NSF-CHE 1212895), and the University of
Illinois at Chicago. We also thank Prof. T. Driver (UIC) for
insightful discussions and Mr. Furong Sun (UIUC) for mass
spectrometry data.
(14) For examples of oxidative couplings of enamines and silyl enol
ethers, see: (a) Narasaka, K.; Okauchi, T.; Tanaka, K.; Murikami, M.
Chem. Lett. 1992, 2099. (b) Jang, H.-Y.; Hong, J.-B.; MacMillan, D. W.
C. J. Am. Chem. Soc. 2007, 129, 7004. (c) Li, Q.; Fan, A.; Lu, Z.; Cui, Y.;
Lin, W.; Jia, Y. Org. Lett. 2010, 12, 4066.
(15) For examples of fluorenone-substituted azaallenium salts, see:
(a) Frey, H.; Mehlhorn, A.; Ruehlmann, K. Tetrahedron 1987, 43, 2945.
(b) Al-Talib, M.; Jibril, I.; Jochims, J. C.; Huttner, G. Tetrahedron 1985,
41, 527. (c) Al-Talib, M.; Jochims, J. C. Chem. Ber. 1984, 117, 3222.
(16) For related examples of [3 + 2] cycloadditions and rearrange-
ments of N-alkyl- and N-arylnitrones with electron-deficient allenes, see:
(a) Padwa, A.; Matzinger, M.; Tomioka, Y.; Venkatramanan, M. K. J.
Org. Chem. 1988, 53, 955. (b) Padwa, A.; Bullock, W. H.; Kline, D. N.;
REFERENCES
■
(1) For seminal and recent examples of the Piloty−Robinson pyrroles
synthesis, see: (a) Piloty, O. Chem. Ber. 1910, 43, 489. (b) Robinson, R.;
Robinson, G. M. J. Chem. Soc. 1918, 43, 639. (c) Posvic, H.; Dombro, R.;
Ito, H.; Telinski, T. J. Org. Chem. 1974, 39, 2575. (d) Baldwin, J. E.;
Bottaro, J. C. J. Chem. Soc., Chem. Commun. 1982, 624. (e) Milgram, B.
C.; Eskildsen, K.; Richter, S. M.; Scheidt, W. R.; Scheidt, K. A. J. Org.
Chem. 2007, 72, 3941. (f) Alekseyev, R. S.; Kurkin, A. V.; Yurovskaya, M.
A. Chem. Heterocycl. Compd. 2011, 47, 584.
(2) For seminal examples and reviews of the Trofimov reaction, see:
(a) Sheradaky, T. Tetrahedron Lett. 1970, 11, 25. (b) Mikhaleva, A. I.;
Zaitsev, A. B.; Trofimov, B. A. Russ. Chem. Rev. 2002, 71, 563.
(c) Trofimov, B. A. Curr. Org. Chem. 2002, 6, 1121. (d) Trofimov, B. A.;
Mikhaleva, A. I. Heterocycles 1994, 37, 1193. (e) Trofimov, B. A. Adv.
Heterocycl. Chem. 1990, 51, 177. (f) Trofimov, B. A.; Mikhaleva, A. I.;
Schmidt, E. Y.; Sobenina, L. N. Adv. Heterocycl. Chem. 2010, 99, 209.
(3) For recent examples and limitations of the Trofimov reaction, see:
(a) Petrova, O. V.; Sobenina, L. N.; Ushakov, I. A.; Mikhaleva, A. I.;
Hyun, S. H.; Trofimov, B. A. ARKIVOC 2009, 4, 14. (b) Trofimov, B. A.;
Tarasova, O. A.; Mikhaleva, A. I.; Kalinina, N. A.; Sinegovskya, L. M.;
Henkelmann, J. Synthesis 2000, 1585. (c) Petrova, O. V.; Sobenina, L.
N.; Mikhaleva, A. I. Chem. Heterocycl. Compd. 2013, 48, 1628.
(4) For an example of a copper-catalyzed dialkenylation of a hydrazine
followed by cyclization to the corresponding pyrrole, see: Rivero, M. R.;
Buchwald, S. L. Org. Lett. 2007, 9, 973.
(5) For examples of the addition of oximes to activated alkynes, see:
(a) Ngwerume, S.; Camp, J. E. Chem. Commun. 2011, 47, 1857.
(b) Ngwerume, S.; Camp, J. E. J. Org. Chem. 2010, 75, 6271.
(c) Madabhushi, S.; Vangipuram, V. S.; Mallu, K. K. R.; Chinthala, N.;
Beeram, C. R. Adv. Synth. Catal. 2012, 354, 1413.
(6) For examples of Ir-catalyzed isomerizations of O-allyl oximes to
form O-vinyl oximes, see: (a) Wang, H.-Y.; Mueller, D. S.; Sachwani, R.
M.; Londino, H. N.; Anderson, L. L. Org. Lett. 2010, 12, 2290. (b) Wang,
H.-Y.; Mueller, D. S.; Sachwani, R. M.; Kapadia, R.; Londino, H. N.;
Anderson, L. L. J. Org. Chem. 2011, 76, 3203.
Perumattam, J. J. Org. Chem. 1989, 54, 2862. (c) Wilkens, J.; Kuhling, A.;
̈
Blechert, S. Tetrahedron 1987, 43, 3237. (d) Wirth, T.; Blechert, S.
Synlett 1994, 717.
(17) No intermediates, such as 5a or 6a, were observed by either 1H or
13C NMR spectroscopy when the conversion of a mixture of 1a and 2a to
4a was monitored in DCE-d4. A mixture of 1a and DMAD gave only a
trace amount of [3 + 2] cycloaddition product when stirred at 25−60
°C. At further elevated temperatures, alternative rearrangement activity
was observed; see ref 9.
(18) We chose to demonstrate the utility of enamino ketones 4 by
converting a representative set of examples to pyrroles 8. The hydrolysis
and condensation process appeared to be general.
(19) For examples of the preparation of 2-CH2CO2R pyrroles from α-
amino ketones and β-ketoesters, see: (a) Freifeld, I.; Shojaei, H.; Langer,
P. J. Org. Chem. 2006, 71, 4965. (b) Tang, P. C.; Su, Y. D.; Feng, J.; Fu, J.
H.; Yang, J. L.; Xiao, L.; Peng, J. H.; Li, Y. L.; Zhang, L.; Hu, B.; Zhou, Y.;
Li, F. Q.; Fu, B. B.; Lou, L. G.; Gong, A. S.; She, G. H.; Sun, W. H.; Mong,
X. T. J. Med. Chem. 2010, 53, 8140. (c) Clezy, P. S.; Duncan, M. W.; Ravi,
B. N.; Van Thuc, L. Aust. J. Chem. 1986, 39, 399.
(20) Dione 10a was isolated as a 1:1 mixture of diastereomers.
(21) For recent reviews of the Stetter reaction, see: (a) Rovis, T. Chem.
Lett. 2008, 37, 2. (b) Vora, H. M.; Rovis, T. Aldrichimica Acta 2011, 44,
3. (c) Read de Alaniz, J.; Rovis, T. Synlett 2009, 1189. (d) Johnson, J. S.
Curr. Opin. Drug Discovery 2007, 10, 691.
(22) For a recent review and examples of oxidative enolate coupling
reactions to form 1,4-diones, see: (a) Guo, F.; Clift, M. D.; Thomson, R.
J. Eur. J. Org. Chem. 2012, 4881. (b) Ito, Y.; Konoike, T.; Saegusa, T. J.
Am. Chem. Soc. 1975, 97, 2912. (c) Clift, M. D.; Taylor, C. T.; Thomson,
R. J. Org. Lett. 2007, 9, 4667. (d) Avetta, C. A., Jr.; Konkol, L. C.; Taylor,
C. N.; Dugan, K. C.; Stern, C. L.; Thomson, R. J. Org. Lett. 2008, 10,
5621.
(7) For recent examples of nitrone [3 + 2] cycloadditions with allenes
involved in cascade processes and metal-catalyzed examples of these
transformations, see: (a) Bhella, S. S.; Pannu, A. P. S.; Elango, M.;
Kapoor, A.; Hundal, M. S.; Ishar, M. P. S. Tetrahedron 2009, 65, 5928.
(b) Kapur, A.; Kumar, K.; Singh, L.; Singh, P.; Elango, M.; Subramanian,
V.; Gupta, V.; Kanwal, P.; Ishar, M. P. S. Tetrahedron 2009, 65, 4593.
(c) Wu, X.; Na, R.; Liu, H.; Liu, J.; Wang, M.; Zhong, J.; Guo, H.
Tetrahedron Lett. 2012, 53, 342. (d) Li, G.-H.; Zhou, W.; Li, X.-X.; Bi,
Q.-W.; Wang, Z.; Zhao, Z.-G.; Hu, W.-X.; Chen, Z. Chem. Commun.
2013, 49, 4770.
(8) For recent examples of other types of additions of nitrones and
allenes, see: (a) Stoll, A. H.; Blakey, S. B. Chem. Sci. 2011, 2, 112. (b) Xu,
C.-P.; Huang, P.-Q.; Py, S. Org. Lett. 2012, 14, 2034. (c) Wu, L.; Shi, M.
Chem.Eur. J. 2010, 16, 1149.
(9) Mo, D.-L.; Wink, D. J.; Anderson, L. L. Org. Lett. 2012, 14, 5180.
(10) See the Supporting Information for an expanded optimization
table.
3443
dx.doi.org/10.1021/ol501230e | Org. Lett. 2014, 16, 3440−3443