Katritzky et al.
SCHEME 1. Preparative Routes to Amidrazonesa
a Reagents: i-vi reactions with hydrazine; vii reaction with amine R, R1, R2 ) alkyl or aryl.
nitriles,23,24a-d (ii) thioamides for the preparation of aromatic
amidoximes,23,25a,b (iii) imidates,26a,b or (iv) amidines and their
salts (49-52% yield).26a,27 Alternative routes include (v) reaction
of amines with hydroximic acid chlorides and oximino-
ethers,23,26b,28a-d (vi) reduction of oxyamidoximes,23 (vii) plati-
num catalyzed reduction of nitrosolic and nitrolic acids,23,29 (viii)
aldol condensations of formamidoxime with aromatic alde-
hydes,23 or (ix) oxadiazole ring cleavage.30a,b A single procedure
for the preparation of class II amidrazones includes the reaction
of imidoyl halides31a with arylnitrenium ion (Scheme 4).31b
Moreover, O-substituted amidoximes are prepared directly by
the reaction of amidoximes with methyl iodide or dimethyl
sulfate to give O-methylamidoxime (22% yield)32a,b or acetylene
to yield O-vinylamidoximes (80% yield).33
SCHEME 2. Tautomeric Forms of Amidrazones
one or more of the existing methods; however, literature
substructural searches showed no known examples of com-
pounds of class G. The present work provides an easy access
to novel class G in addition to classes A, B, D, and E. As to
class II, a single example was reported for the preparation of
such compounds as a hydroiodide salt in 75% yield.15d
Amidoximes 2A can be divided into five subclasses (two
mono, two di, one tri) substituted as shown in Table 2. As to
amidoximes 2B, four subclasses (one mono, two di, one tri)
can also exist as shown in Table 3. The 10 reported methods
Introduction to Amidoximes
Amidoximes 2 are biologically active as antitumor agents,16
antimalerial agents,17 and nitric oxide synthase (NOS) sub-
strates.18,19 Amidoximes are prodrugs for amidines20,21 and
intermediates for the preparation of heterocycles such as
oxadiazoles.22 Tautomerism in simple amidoximes had been the
subject of some debate, although most authors accept the
structure of potentially tautomeric amidoximes to be the “amino
oxime” form (2A) and not the “amino hydroxylamine” structure
(2B) (Scheme 3 ).
Thus, similar to amidrazones, amidoximes 2 can be divided
into two classes: class I, which do not carry a substituent on
N2 exist predominantly as structure 2A (Scheme 3), and class
II, which are substituted on N2 exist necessarily as 2B (Scheme
3). Common methods (Scheme 5) for the preparation of class I
amidoximes include reactions of hydroxylamines with (i)
(23) Eloy, F.; Lenaers, R. Chem. ReV. 1962, 62, 155.
(24) (a) Stephenson, L.; Warburton, W. K.; Wilson, M. J. J. Chem. Soc.
C 1969, 6, 861. (b) Street, L. J.; Sternfeld, F.; Jelley, R. A.; Reeve, A. J.;
Carling, R. W.; Moore, K. W.; McKernan, R. M.; Sohal, B.; Cook, S.;
Pike, A.; Dawson, G. R.; Bromidge, F. A.; Wafford, K. A.; Seabrook, G.
R.; Thompson, S. A.; Marshall, G.; Pillai, G. V.; Castro, J. L.; Atack, J.
R.; MacLeod, A. M. J. Med. Chem. 2004, 47, 3642. (c) Kaboudin, B.;
Navaee, K. Heterocycles 2003, 60, 2287. (d) Briggs, L. H.; Cambie, R. C.;
Dean, I. C.; Rutledge, P. S. Aust. J. Chem. 1976, 29, 357.
(25) (a) Goldbeck, O. Chem. Ber. 1891, 3658. (b) Tiemann, F. Chem.
Ber. 1886, 1668.
(26) (a) Pinner, A. Ber. Dtsch. Chem. Ges. 1884, 184. (b) Bushey, D.
F.; Hoover, F. C. J. Org. Chem. 1980, 45, 4198.
(27) Szczepankiewicz, W.; Borowiak, T.; Kubicki, M.; Suwin´ski, J.;
Wagner, P. Pol. J. Chem. 2002, 76, 1137.
(28) (a) Baker, K. W. J.; Horner, K. S.; Moggach, S. A.; Paton, R. M.;
Smellie, I. A. S. Tetrahedron Lett. 2004, 45, 8913. (b) Cragg, R. H.; Miller,
T. J. J. Chem. Soc., Dalton Trans. 1982, 907. (c) Gennet, D.; Zard, S. Z.;
Zhang, H. Chem. Commun. 2003, 1870. (d) Johnson, J. E.; Ghafouripour,
A.; Arfan, M.; Todd, S. L.; Sitz, D. A. J. Org. Chem. 1985, 50, 3348.
(29) Wieland, H.; Bauer, H. Ber. 1906, 1480.
(30) (a) Buscemi, S.; Cicero, M. G.; Vivona, N; Caronna, T. J.
Heterocycl. Chem. 1988, 25, 931. (b) Gandolfi, R.; Gamba, A.; Gru¨nanger,
P. Heterocycles 1995, 40, 619.
(16) Flora, K. P.; Riet, B. V.; Wampler, G. L. Cancer Res. 1978, 38,
1291.
(17) Hynes, J. B.; Hack, L. G. J. Med. Chem. 1972, 15, 1194.
(18) Rehse, K.; Brehme, F. Arch. Pharm. Pharm. Med. Chem. 1998,
331, 375.
(19) Jousserandot, A.; Boucher, J. L.; Henry, Y.; Niklaus, B.; Clement,
B.; Mansuy, D. Biochemistry 1998, 37, 17179.
(20) Weller, T.; Alig, L.; Beresini, M.; Blackburn, B.; Bunting, S.;
Hadva´ry, P.; Mu¨ller, M. H.; Knopp, D.; Levet-Trafit, B.; Lipari, M. T.;
Modi, N. B.; Mu¨ller, M.; Refino, C. J.; Schmitt, M.; Scho¨nholzer, P.; Weiss,
S.; Steiner, B. J. Med. Chem. 1996, 39, 3139.
(31) (a) Sˇpirkova´, K.; Bucˇko, M.; Sˇtankovsky´, S. ARKIVOC 2005, V,
96. (b) Binding, N.; Heesing, A. Chem. Ber. 1983, 116, 1822.
(32) (a) Costa Leite, L. F. C.; Srivastava, R. M.; Cavalcanti, A. P. Bull.
Soc. Chem. Belg. 1989, 98, 203. (b) Johnson, J. E.; Cornell, S. C. J. Org.
Chem. 1980, 45, 4144.
(21) Clement, B. Drug Metab. ReV. 2002, 34, 565.
(22) Hamze´, A.; Hernandez, J. F.; Fulcrand, P.; Martinez, J. J. Org. Chem.
2003, 68, 7316.
(33) Trofimov, B. A.; Schmidt, E. Y.; Vasil’tsov, A. M.; Mikhaleva, A.
I.; Zaitsev, A. B.; Morozova, L. V.; Gorskhov, A. G.; Henkelmann, J.; Arndt,
J. D. Synthesis 2001, 16, 2427.
9052 J. Org. Chem., Vol. 71, No. 24, 2006