P. Tiwari, A. K. Misra / Tetrahedron Letters 47 (2006) 3573–3576
3575
OH
O
AcO
OAc
O
AcO
AcO
AcO
AcO
AcO
AcO
OAc
O
OAc
O
SPh
AcO
a,b
O
AcO
OAc
AcO
AcO
o
OAc
OC(NH)CCl3
O
HClO4-SiO2, CH2Cl2, MS-4A,
0 oC, 1 h, 85%
OAc
OAc
SPh
OAc
Scheme 2. Reagents and conditions: (a) HClO4–SiO2, CH3CN, 70 °C, 2 h, 95%; (b) CCl3CN, K2CO3, CH2Cl2, 80%.
Sambaiah, T.; Fanwick, P. E.; Cushman, M. Synthesis
2001, 1450–1452; (e) Conchie, J.; Levvy, G. A. Methods
Carbohydr. Chem. 1963, 2, 345–347; (f) Itoh, K.; Taka-
mura, H.; Watanbe, K.; Araki, Y.; Ishido, Y. Carbohydr.
Res. 1986, 156, 241–246; (g) Blazejewski, J.-C.; Dorme, R.;
Wakselman, C. Synthesis 1985, 1121–1122; (h) Mikamo,
M. Carbohydr. Res. 1989, 191, 150–153; (i) Rowell, R. M.;
Feather, M. S. Carbohydr. Res. 1967, 4, 486–491; (j)
Schneider, G.; Weisz-Vincze, I.; Vass, A.; Kovacs, K.
Tetrahedron Lett. 1972, 32, 3349–3352; (k) Herzig, J.;
Nudelman, A. Carbohydr. Res. 1986, 153, 162–167.
7. Koto, S.; Morishima, N.; Miyata, Y.; Zen, S. Bull. Chem.
Soc. Jpn. 1976, 49, 2639–2640.
In order to verify the synthetic utility of our method in
comparison to other reported protocols, peracetylated
galactose was transformed into its hemiacetal, which
was then converted to the trichloroacetimidate deriva-
tive using trichloroacetonitrile and K2CO3. The peracet-
ylated galactosyltrichloroacetimidate thus obtained was
further used in the glycosylation reaction using HClO4–
SiO2 as the glycosylation activator10 to prepare a novel
disaccharide thioglycoside, which can be used as a disac-
charide donor for the preparation of several oligosac-
charides (Scheme 2).11
8. (a) Xie, J.; Molina, A.; Czernecki, S. J. Carbohydr. Chem.
1999, 18, 481–498; (b) Barua, P. M. B.; Sahu, P. R.;
Mondal, E.; Bose, G.; Khan, A. T. Synlett 2002, 81–84; (c)
Uchiro, H.; Wakiyama, Y.; Mukaiyama, T. Chem. Lett.
1998, 567–568; (d) Misra, A. K.; Agnihotri, G. Carbohydr.
Res. 2004, 339, 885–890.
9. (a) Misra, A. K.; Tiwari, P.; Agnihotri, G. Synthesis 2005,
2, 260–266; (b) Misra, A. K.; Tiwari, P.; Madhusudan, S.
K. Carbohydr. Res. 2005, 340, 325–329; (c) Tiwari, P.;
Agnihotri, G.; Misra, A. K. Carbohydr. Res. 2005, 340,
749–752; (d) Kumar, R.; Tiwari, P.; Maulik, P. R.; Misra,
A. K. J. Mol. Catal. A: Chem. 2006, 247, 27–30.
In summary, we have introduced a new method for the
selective anomeric deacetylation or debenzoylation of
carbohydrate derivatives under acidic reaction condi-
tions. As the reaction does not require any toxic
reagents and chromatographic purification, this envi-
ronmentally benign reaction protocol should find appli-
cation in synthetic organic chemistry.
Acknowledgements
10. (a) Mukhopadhyaya, B.; Maurer, S. V.; Rudolph, N.; van
Well, R.; Russell, D.; Field, R. A. J. Org. Chem. 2005, 70,
9059–9062; (b) Du, Y.; Wei, G.; Cheng, S.; Hua, Y.;
Linhardt, R. J. Tetrahedron Lett. 2006, 47, 307–310.
11. 1,2,3,4,6-Penta-O-acetyl-b-D-galactose (585 mg, 1.5 mmol)
and HClO4–SiO2 (35 mg) were mixed in CH3CN (5 mL)
and stirred at 70 °C for 1.5 h. The reaction mixture was
filtered through Celite, rinsed with CH2Cl2 and concen-
trated. To a mixture of the crude product (496 mg,
1.42 mmol) and CCl3CN (570 lL, 5.68 mmol) in CH2Cl2
(5 mL) was added anhydrous K2CO3 (1.0 g) and the
reaction mixture was stirred at room temperature for 3 h.
After completion (TLC), the reaction mixture was filtered,
rinsed with CH2Cl2, concentrated and passed through a
short pad of SiO2 to give per-O-acetylated galactosyl
trichloroacetimidate (560 mg). To a mixture of per-O-
acetylated galactosyl trichloroacetimidate (560 mg,
1.1 mmol) and phenyl 2,3,4-tri-O-acetyl-1-thio-b-D-gluco-
pyranoside (398 mg, 1.0 mmol) in CH2Cl2 (5 mL) was
Instrumentation facilities from SAIF, CDRI are grate-
fully acknowledged. P.T. thanks CSIR, New Delhi, for
providing a Senior Research Fellowship. This project
was partly funded by the Department of Science and
Technology (DST), New Delhi (SR/FTP/CSA-10/2002),
India.
References and notes
1. (a) Pougny, J.-R.; Jacquinet, J.-C.; Nassr, M.; Duchet, D.;
Milat, M.-L.; Sinay, P. J. Am. Chem. Soc. 1977, 99, 6762–
¨
6763; (b) Schmidt, R. R.; Jung, K.-H. In Preparative
Carbohydrate Chemistry; Hanessian, S., Ed.; Marcel
Dekker: New York, 1996; pp 283–312.
2. Caputo, R.; Kunz, H.; Mastroianni, D.; Palumbo, G.;
Pedatella, S.; Solla, F. Eur. J. Org. Chem. 1999, 3147–
3150.
3. Yokoyama, M. Carbohydr. Res. 2000, 327, 5–14.
4. (a) Schmidt, R. R.; Klotz, W. Synlett 1991, 168–170; (b)
Schmidt, R. R. Angew. Chem., Int. Ed. Engl. 1986, 25,
212–235.
5. (a) Garcia, B. A.; Poole, J. L.; Gin, D. Y. J. Am. Chem.
Soc. 1997, 119, 7597–7598; (b) Garcia, B. A.; Gin, D. Y. J.
Am. Chem. Soc. 2000, 122, 4269–4279; (c) Garcia, B. A.;
Gin, D. Y. Org. Lett. 2000, 2, 2135–2138; (d) Nguyen, H.
M.; Poole, J. L.; Gin, D. Y. Angew. Chem., Int. Ed. 2001,
40, 414–417.
6. (a) Excoffier, G.; Gagnaire, D.; Utille, J.-P. Carbohydr.
Res. 1975, 39, 368–373; (b) Watanbe, K.; Itoh, K.; Araki,
Y.; Ishido, Y. Carbohydr. Res. 1986, 154, 165–176; (c)
Nudelman, A.; Herzig, J.; Gottlieb, H. E.; Keinan, E.;
Sterling, J. Carbohydr. Res. 1987, 162, 145–152; (d)
˚
added powdered MS-4 A (500 mg) and the reaction
mixture was stirred under Ar for 30 min at 0 °C. To the
cooled reaction mixture was added HClO4–SiO2 (30 mg)
and the reaction mixture was stirred at 0 °C for 1 h. After
completion of the reaction (TLC), the reaction mixture
was filtered through a Celite bed and washed with CH2Cl2.
The organic layer was washed with satd aq NaHCO3
and water, dried (Na2SO4) and concentrated. Column
chromatography of the crude product over SiO2 using
hexane–EtOAc (3:1) furnished phenyl (2,3,4,6-tetra-O-
acetyl-b-D-galacto-pyranosyl)-(1!6)-2,3,4-tri-O-acetyl-1-
thio-b-D-glucopyranoside (618 mg, 85%). 1H NMR
(CDCl3, 300 MHz): d 7.48–7.32 (m, 5H, aromatic pro-
tons), 5.39–5.33 (dd, J = 9.5 and 2.4 Hz, 1H), 5.28 (d,
J = 7.9 Hz, 1H), 5.21–5.17 (m, 1H), 5.15–5.02 (m, 1H),