Organic & Biomolecular Chemistry
Paper
The organic phase was washed three times with an ammonia
solution (0.1 M, 100 mL), dried over Na2SO4, filtered and evap-
orated to afford compound 1 (white wax, 735 mg, 0.76 mmol,
100% yield). mp 164.2–170.1 °C. The 1H-NMR spectrum shows
additional signals related to a chemical exchange in the NMR
time scale due to protonation of 1. 1H-NMR (300 MHz, CD2Cl2,
δ): 1.18–1.36 (m, 56H), 1.65–1.82 (m, 8H), 1.86–2.05 (m, 8H),
3.02–3.09 (m, 8H), 5.41–5.47 (m, 4H), 7.44 (d, J = 8 Hz, 4H),
7.67 (s, 4H), 8.10 (d, J = 8 Hz, 4H). 13C-NMR (75 MHz, CD2Cl2,
δ): 29.10, 29.24, 29.44, 29.49, 29.55, 29.70, 29.97, 30.49, 30.72,
32.82, 39.91, 40.21, 122.08, 122.25, 125.41, 127.08, 130.32,
135.96, 145.83, 162.81. HRMS-ESI TOF (m/z): [M + H+] calcd for
C68H96N4, 969.7713; found, 969.7711; [M + Na+] calcd for
C68H96N4, 991.7533; found, 991.7526. HRMS-MALDI TOF
(m/z): [M + H+] calcd for C68H96N4, 969.7713; found, 969.7747.
UV-vis (CH2Cl2) λmax, nm (ε): 234 (97 910); 271 (58 420); 283 sh
(37 560).
pp. 249–307; (d) G. Podoprygorina and V. Böhmer, in Tetra-
urea Calix[4]arenes – From Dimeric Capsules to Novel Cate-
nanes and Rotaxanes in Modern Supramolecular Chemistry,
ed. F. Diederich, P. Stang and R. R. Tykwinski, Wiley-VCH,
Weinheim, 2008, pp. 143–184; (e) A. J. Wisner and
A. B. Blight, in Rotaxanes and Catenane Synthesis in Modern
Supramolecular Chemistry, ed. F. Diederich, P. Stang and
R. R. Tykwinski, Wiley-VCH, Weinheim, 2008, pp. 349–387.
5 V. Balzani, A. Credi, S. Silvi and M. Venturi, Chem. Soc.
Rev., 2006, 35, 1135–1149.
6 (a) E. Wasserman, J. Am. Chem. Soc., 1960, 82, 4433–4434;
(b) G. Schill and A. Lüttringhaus, Angew. Chem., 1964, 76,
567–568; (c) R. Wolovssky, J. Am. Chem. Soc., 1970, 82,
2132–2133; (d) D. A. Bem-Efraim, C. Batich and
E. Wasserman, J. Am. Chem. Soc., 1970, 82, 2133–2135.
7 C. O. Dietrich-Buchecker, J.-P. Sauvage and J.-P. Kintzinger,
Tetrahedron Lett., 1983, 24, 5095–5098.
8 (a) C. A. Hunter, J. Am. Chem. Soc., 1992, 114, 5303–5311;
(b) F. Vögtle, S. Meier and R. Hoss, Angew. Chem., Int. Ed.
Engl., 1992, 31, 1619–1622; (c) A. Harada, J. Li and
M. Kamanuci, Chem. Commun., 1997, 1413–1414;
(d) C. Seel and F. Vögtle, Chem. – Eur. J., 2000, 6, 21–24;
(e) D. B. Amabilino and J. F. Stoddart, Chem. Rev., 1995, 95,
2725–2828; (f) M. S. Vickers and P. D. Beer, Chem. Soc. Rev.,
2007, 36, 211–225.
Acknowledgements
Thanks are due to the Ministero dell’Istruzione, dell’Università
e della Ricerca (MIUR, PRIN 2010CX2TLM). This work was
also partially supported by Università di Roma La Sapienza
(Progetti di Ricerca 2011 and Avvio alla Ricerca 2012).
9 (a) R. T. S. Lam, A. Belenguer, S. L. Roberts, C. Naumann,
T. Jarrosson, S. Otto and J. K. M. Sanders, Science, 2005,
308, 667–669; (b) M. E. Belowich and J. F. Stoddart, Chem.
Soc. Rev., 2012, 41, 2003–2024 and references cited therein;
(c) F. B. L. Cougnon, N. A. Jenkins, G. Dan Pantoş and
J. K. M. Sanders, Angew. Chem., Int. Ed., 2012, 51, 1443–
1447.
Notes and references
1 (a) P. T. Corbett, J. Leclaire, L. Vial, K. R. West, J.-L. Wietor,
J. K. M. Sanders and S. Otto, Chem. Rev., 2006, 106, 3652–
3711; (b) Dynamic combinatorial chemistry, ed. J. Reek and
S. Otto, Wiley-VCH Verlag GmbH
& Co. KGaA Inc., 10 (a) T. J. Kidd, D. A. Leigh and A. J. Wilson, J. Am. Chem.
Weinheim, 2010; (c) Dynamic combinatorial chemistry: in
drug discovery, bioorganic chemistry and material science, ed,
B. L. Miller, Wiley and Sons Inc., Hoboken New Jersey,
2009; (d) S. Ladame, Org. Biomol. Chem., 2008, 6, 219–226;
(e) Y. Jin, C. Yu, R. J. Denman and W. Zhang, Chem. Soc.
Rev., 2013, 42, 6634–6654; (f) J. Li, P. Nowak and S. Otto,
J. Am. Chem. Soc., 2013, 135, 9222–2239; (g) A. Herrmann,
Chem. Soc. Rev., 2014, 43, 1899–1933.
Soc., 1999, 121, 1599–1600; (b) H. Y. Au-Yeung, G. Dan
Pantoş and J. K. M. Sanders, Proc. Natl. Acad. Sci. U. S. A.,
2009, 106, 10466–10470; (c) H. Y. Au-Yeung, G. Dan Pantoş
and J. K. M. Sanders, J. Am. Chem. Soc., 2009, 131, 16030–
16032; (d) F. B. L. Cougnon, N. Ponnuswamy, N. A. Jenkins,
G. Dan Pantoş and J. K. M. Sanders, J. Am. Chem. Soc.,
2012, 134, 19129–19135.
11 (a) S. Di Stefano, J. Phys. Org. Chem., 2010, 23, 797–805;
(b) J. A. Berrocal, R. Cacciapaglia and S. Di Stefano, Org.
Biomol. Chem., 2011, 9, 8190–8194; (c) J. A. Berrocal,
R. Cacciapaglia, S. Di Stefano and L. Mandolini, New
J. Chem., 2012, 36, 40–43; (d) A. Ruggi, R. Cacciapaglia,
S. Di Stefano, E. Bodo and F. Ugozzoli, Tetrahedron, 2013,
69, 2767–2774.
2 J.-M. Lehn, Chem. – Eur. J., 1999, 5, 2455–2463.
3 (a) J. F. Stoddart, Chem. Soc. Rev., 2009, 38, 1802–1820;
(b) J. E. Beves, B. A. Blight, C. J. Cambell, D. A. Leigh and
R. T. McBurney, Angew. Chem., Int. Ed., 2011, 50, 9260–
9327; (c) J.-C. Chambron and J.-P. Sauvage, New J. Chem.,
2013, 37, 49–57.
4 (a) Molecular Catenanes, Rotaxanes and Knots, ed. 12 (a) S. Monfette and D. E. Fogg, Chem. Rev., 2009, 109,
J.-P. Sauvage and C. O. Dietrich-Buchecker, Wiley-VCH,
Weinheim, 1999; (b) F. M. Raymo and J. F. Stoddart, in
Switchable Catenanes and Molecular Shuttles in Molecular
Switches, ed. B. Feringa, Wiley-VCH, Weinheim, 2001, pp.
219–248; (c) J.-P. Collin, J.-M. Kern, L. Raehm and
J.-P. Sauvage, in Metallo-Rotaxanes and Catenanes as Redox
3783–3816 and cited references; (b) D. J. Nelson,
I. W. Ashworth, I. H. Hillier, S. H. Kyne, S. Pandian,
J. A. Parkinson, J. M. Percy, G. Rinaudo and M. A. Vincent,
Chem. – Eur. J., 2011, 17, 13087–13094; (c) K. R. Prasad and
S. M. Kumar, Tetrahedron, 2013, 69, 6512–6518;
(d) P. Hodge, Chem. Rev., 2014, 114, 2278–2312.
Switches: Towards Molecular Machines and Motors in Mole- 13 Ring-opening metathesis polymerizations (ROMP) of con-
cular Switches, ed. B. Feringa, Wiley-VCH, Weinheim, 2001,
centrated solutions of macrocyclic olefins are quite popular
This journal is © The Royal Society of Chemistry 2014
Org. Biomol. Chem., 2014, 12, 6167–6174 | 6173