ChemComm
Communication
2012, 45, 936–946; (e) J. J. Mousseau and A. B. Charette,
Acc. Chem. Res., 2013, 46, 412–424; ( f ) C.-J. Li, Acc. Chem. Res.,
2009, 42, 335–344; (g) O. Daugulis, H.-Q. Do and D. Shabashov, Acc.
Chem. Res., 2009, 42, 1074–1086; (h) K. R. Campos, Chem. Soc. Rev.,
2007, 36, 1069–1084; (i) H. Lu and X. P. Zhang, Chem. Soc. Rev., 2011,
40, 1899–1909; ( j) H. Li, B.-J. Li and Z.-J. Shi, Catal. Sci. Technol.,
2011, 1, 191–206; (k) O. Baudoin, Chem. Soc. Rev., 2011, 40,
4902–4911; (l) T. A. Ramirez, B. Zhao and Y. Shi, Chem. Soc. Rev.,
2012, 41, 931–942; (m) B. T. Gephart III and T. H. Warren, Organo-
metallics, 2012, 31, 7728–7752; (n) B. A. Arndtsen, R. G. Bergman,
T. A. Mobley and T. H. Peterson, Acc. Chem. Res., 1995, 28, 154–162.
2 (a) N. Komiya, S. Noji and S.-I. Murahashi, Chem. Commun., 2001, 65–66;
(b) A. Pariyar, S. Bose, A. N. Biswas, P. Das and P. Bandyopadhyay, Catal.
Commun., 2013, 32, 23–27; (c) A. S. Goldstein, R. H. Beer and R. S. Drago,
J. Am. Chem. Soc., 1994, 116, 2424–2429; (d) J. T. Groves and T. E. Nemo,
J. Am. Chem. Soc., 1983, 105, 6243–6248; (e) C. L. Hill and B. C. Schardt,
J. Am. Chem. Soc., 1980, 102, 6375–6377; ( f ) W. Liu and J. T. Groves,
J. Am. Chem. Soc., 2010, 132, 12847–12849; (g) C. L. Hill, J. A. Smegal and
T. J. Henly, J. Org. Chem., 1983, 48, 3277–3281; (h) Y. Fujiwara, K. Takaki
and Y. Taniguchi, Synlett, 1996, 591–599.
3 G. Deng, L. Zhao and C.-J. Li, Angew. Chem., Int. Ed., 2008, 47,
6278–6282.
4 (a) H.-F. Bettinger, M. Filthaus, H. Bornemann and I. M. Oppel,
Angew. Chem., Int. Ed., 2008, 47, 4744–4747; (b) M. Ochiai,
K. Miyamato, T. Kaneaki, S. Hayashi and W. Nakanishi, Science,
2011, 332, 448–451; (c) B. Tran, B. Li, M. Driess and J. F. Hartwig,
J. Am. Chem. Soc., 2014, 136, 2555–2563.
Fig. 2 Substrate scope of alkanes. a Reaction conditions: 1 (0.2 mmol),
BPO (ca. 0.44 mmol), alkanes (2.0 mL), 100 1C, 4 h. b Determined by
1H NMR spectroscopy.
5 (a) A. P. Antonchick and L. Burgmann, Angew. Chem., Int. Ed., 2013,
52, 3267–3271; (b) R. Narayan and A. P. Antonchick, Chem. – Eur. J.,
2014, 20, 4568–4572.
6 S. Chuprakov, J. A. Malik, M. Zibinsky and V. V. Fokin, J. Am. Chem.
Soc., 2011, 133, 10352–10355.
7 For two reviews, see: (a) C. L. Hill, Synlett, 1995, 127–132; (b) A. A.
Forkin and P. R. Schreiner, Chem. Rev., 2002, 102, 1551–1594. For
selected recent examples, see: (c) P. Xie, Y. Xie, B. Qian, H. Zhou,
C. Xia and H. Huang, J. Am. Chem. Soc., 2012, 134, 9902–9905;
(d) P. Xie, C. Xia and H. Huang, Org. Lett., 2013, 15, 3370–3373.
8 Y. Zhu and Y. Wei, Chem. Sci., 2014, 5, 2379–2382.
9 For reviews on cascade radical reaction, see: (a) A. J. McCarroll and
J. C. Walton, Angew. Chem., Int. Ed., 2001, 40, 2224–2248;
(b) A. J. McCarroll and J. C. Walton, J. Chem. Soc., Perkin Trans. 1,
2001, 3215–3229.
10 Z. Li, Y. Zhang, L. Zhang and Z.-Q. Liu, Org. Lett., 2014, 16, 382–385.
11 (a) B. Zhang, C. G. Daniliuc and A. Studer, Org. Lett., 2014, 16,
250–253; (b) J.-J. Cao, T.-H. Zhu, S.-Y. Wang, Z.-Y. Gu, X. Wang and
S.-J. Ji, Chem. Commun., 2014, 50, 6439–6442; (c) L. Wang, W. Sha,
Q. Dai, X. Feng, W. Wu, H. Peng, B. Chen and J. Cheng, Org. Lett.,
2014, 16, 2088–2091; (d) L. Gu, C. Jin, J. Liu, H. Ding and B. Fan,
Chem. Commun., 2014, 50, 4643–4645; (e) Q. Wang, X. Dong, T. Xiao
and L. Zhou, Org. Lett., 2013, 15, 4846–4849; ( f ) B. Yang, Q.-P. Tian
and S.-D. Yang, Chin. J. Org. Chem., 2014, 34, 717–721.
12 (a) R. S. Theobald and K. Schofield, Chem. Rev., 1950, 46, 170–189;
(b) S. Simeon, J. L. Rios and A. Villar, Pharmazie, 1989, 44, 593–597;
(c) S. D. Phillips and R. N. Castle, J. Heterocycl. Chem., 1981, 18, 223–232;
(d) W. K. Brewster, D. E. Nichols, R. M. Riggs, D. M. Mottola,
T. W. Lovenberg, M. H. Lewis and R. B. Mailman, J. Med. Chem., 1990,
33, 1756–1764; (e) Y. L. Janin, A. Croisy, J.-F. Riou and E. Bisagni, J. Med.
Chem., 1993, 36, 3686–3692; ( f ) T. Nakanishi, M. Suzuki, A. Saimoto and
T. Kabasawa, J. Nat. Prod., 1999, 62, 864–867; (g) L. Sripada, J. A. Teske
and A. Deiters, Org. Biomol. Chem., 2008, 6, 263–265; (h) O. B. Abdel-
Halim, T. Morikawa, S. Ando, H. Matsuda and M. Yoshikawa, J. Nat.
Prod., 2004, 67, 1119–1124; (i) M. Tobisu, K. Koh, T. Furukawa and
N. Chatani, Angew. Chem., Int. Ed., 2012, 51, 11363–11366.
decreased by the electron-withdrawing groups attached in the
cyclized phenyl ring. For example, 3da, 3ea and 3fa were all
isolated in good yield. However, moderate yields were obtained
for 3ga, 3ha and 3ia, which may be at least partly due to
potential side reaction derived from the substituted groups.
For the isonitrile possessing a meta-methyl on the cyclized
phenyl ring, 3la was isolated in 73% yield with 3 : 2 selectivity,
where the less hindered isomer was the main product.
Next, the substrate scope of alkanes was studied, as shown
in Fig. 2. Once again, cyclopentane, cycloheptane and cyclo-
octane worked well, providing the desired products 3ab, 3ac,
3ad and 3af in 67%, 80%, 81% and 30% yields, respectively.
Particularly, hexane took part in the reaction, leading to the 2-
and 3- functionalized products 3ae (1 : 1) in total 62% yield.
In conclusion, we have developed the BPO-promoted phen-
anthridinylation of simple alkanes with isonitrile.16 The procedure
involves dual C–C bond formation via dual C–H bond cleavage. The
cleavage of the sp3 C-H bond is the rate-determining step in this
transformation.
We thank the National Natural Science Foundation of China
(no. 21272028 and 21202013), ‘‘Innovation & Entrepreneurship
Talents’’ Introduction Plan of Jiangsu Province, the Natural Science
Foundation of Zhejiang Province (no. R4110294), State Key Labora-
tory of Coordination Chemistry of Nanjing University, Jiangsu Key
Laboratory of Advanced Catalytic Materials & Technology, Jiangsu
Province Key Laboratory of Fine Petrochemical Engineering, and
the Priority Academic Program Development of Jiangsu Higher
Education Institutions for financial support.
13 H. Jiang, Y. Cheng, R. Wang, M. Zheng, Y. Zhang and S. Yu, Angew.
Chem., Int. Ed., 2013, 52, 13289–13292.
14 BPO is stabilized by water, containing ca. 60% of BPO in weight as
assayed by 1H NMR.
15 (a) J. A. Tunge and L. N. Foresee, Organometallics, 2005, 24,
6440–6444; (b) R. Taylor, Electrophilic Aromatic Substitution, Wiley,
New York, 1990, pp. 25–27.
Notes and references
1 For reviews, see: (a) C.-J. Li and W.-J. Yoo, Top. Curr. Chem., 2010,
292, 281–302; (b) H. Werner, Angew. Chem., Int. Ed., 2010, 49,
4714–4728; (c) H. M. L. Davies and Y. Lian, Acc. Chem. Res., 2012, 16 During the revision of our manuscript, Liu described a similar work,
45, 923–935; (d) S. R. Neufeldt and M. S. Sanford, Acc. Chem. Res.,
see: Z. Li, F. Fan, J. Yang and Z.-Q. Liu, Org. Lett., 2014, 16, 3396–3399.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 9179--9181 | 9181