Journal of Medicinal Chemistry
Article
translocation in acute promyelocytic leukemia encodes a functionally
altered RAR. Cell 1991, 66, 675−684.
(3) Horlein, A. J.; Naar, A. M.; Heinzel, T.; Torchia, J.; Gloss, B.;
Kurokawa, R.; Ryan, A.; Kamei, Y.; Soderstrom, M.; Glass, C. K.;
Rosenfeld, M. G. Ligand-independent repression by the thyroid
hormone receptor mediated by a nuclear receptor co-repressor. Nature
1995, 377, 397−404.
(4) Heinzel, T.; Lavinsky, R. M.; Mullen, T. M.; Soderstrom, M.;
Laherty, C. D.; Torchia, J.; Yang, W.-M.; Brard, G.; Ngo, S. D.; Davie,
J. R.; Seto, E.; Eisenman, R. N.; Rose, D. W.; Glass, C. K.; Rosenfeld,
M. G. A complex containing N-CoR, mSin3 and histone deacetylase
mediates transcriptional repression. Nature 1997, 387, 43−48.
(5) Laherty, C. D.; Yang, W.-M.; Sun, J. M.; Davie, J. R.; Seto, E.;
Eisenman, R. N. Histone deacetylases associated with the mSin3 Co-
repressor mediate mad transcriptional repression. Cell 1997, 89, 349−
356.
2 by curcumin induces ER stress-associated apoptosis for treating
human liposarcoma. Mol. Cancer Ther. 2011, 10, 461−471.
(21) Wu, S. H.; Hang, L. W.; Yang, J. S.; Chen, H. Y.; Lin, H. Y.;
Chiang, J. H.; Lu, C. C.; Yang, J. L.; Lai, T. Y.; Ko, Y. C.; Chung, J. G.
Curcumin induces apoptosis in human non-small cell lung cancer
NCI-H460 cells through ER stress and caspase cascade- and
mitochondria-dependent pathways. Anticancer Res. 2010, 30, 2125−
2133.
(22) Anand, P.; Kunnumakkara, A. B.; Newman, R. A.; Aggarwal, B.
B. Bioavailability of curcumin: problems and promises. Mol.
Pharmaceuticals 2007, 4, 807−818.
(23) Sharma, R. A. Phase I clinical trial of oral curcumin: biomarkers
of systemic activity and compliance. Clin. Cancer Res. 2004, 10, 6847−
6854.
(24) Yallapu, M. M.; Jaggi, M.; Chauhan, S. C. Curcumin
nanoformulations: a future nanomedicine for cancer. Drug Discovery
Today 2012, 17, 71−80.
(25) Esatbeyoglu, T.; Huebbe, P.; Ernst, I. M.; Chin, D.; Wagner, A.
E.; Rimbach, G. Curcuminfrom molecule to biological function.
Angew. Chem., Int. Ed. 2012, 51, 5308−32.
(26) Agrawal, D. K.; Mishra, P. K. Curcumin and its analogues:
potential anticancer agents. Med. Res. Rev. 2010, 30, 818−860.
(27) Tan, K.-L.; Koh, S.-B.; Ee, R. P.-L.; Khan, M.; Go, M.-L.
Curcumin analogues with potent and selective anti-proliferative
activity on acute promyelocytic leukemia: involvement of accumulated
misfolded nuclear receptor co-repressor (N-CoR) protein as a basis for
selective activity. ChemMedChem. 2012, 7, 1567−1579.
(28) Brown, A.; Shi, Q.; Moore, T. W.; Yoon, Y.; Prussia, A.;
Maddox, C.; Liotta, D. C.; Shim, H.; Snyder, J. P. Monocarbonyl
curcumin analogues: heterocyclic pleiotropic kinase inhibitors that
mediate anticancer properties. J. Med. Chem. 2013, 56, 3456−3466.
(29) Kasinski, A. L.; Du, Y.; Thomas, S. L.; Zhao, J.; Sun, S. Y.; Khuri,
F. R.; Wang, C. Y.; Shoji, M.; Sun, A.; Snyder, J. P.; Liotta, D.; Fu, H.
Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway
by 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24), a novel mono-
ketone analog of curcumin. Mol. Pharmacol. 2008, 74, 654−661.
(30) Thomas, S. L.; Zhao, J.; Li, Z.; Lou, B.; Du, Y.; Purcell, J.;
Snyder, J. P.; Khuri, F. R.; Liotta, D.; Fu, H. Activation of the p38
pathway by a novel monoketone curcumin analog, EF24, suggests a
potential combination strategy. Biochem. Pharmacol. 2010, 80, 1309−
1316.
(31) Olivera, A.; Moore, T. W.; Hu, F.; Brown, A. P.; Sun, A.; Liotta,
D. C.; Snyder, J. P.; Yoon, Y.; Shim, H.; Marcus, A. I.; Miller, A. H.;
Pace, T. W. Inhibition of the NF-kappaB signaling pathway by the
curcumin analog, 3,5-bis(2-pyridinylmethylidene)-4-piperidone
(EF31): anti-inflammatory and anti-cancer properties. Int. Immuno-
pharmacol. 2012, 12, 368−377.
(32) Lanotte, M.; Martin-Thouvein, V.; Najman, S.; Balerini, P.;
Valensi, F.; Berger, R. NB4, a maturation inducible cell line with
t(15;17) marker isolated from a human acute promyelocytic leukemia
(M3). Blood 1991, 77, 1080−1086.
(6) Karagianni, P.; Wong, J. HDAC3: taking the SMRT-N-CoRrect
road to repression. Oncogene 2007, 26, 5439−5449.
(7) Lin, R. J.; Nagy, L.; Inoue, S.; Shao, W.; Miller, W. H., Jr.; Evans,
R. M. Role of the histone deacetylase complex in acute promyelocytic
leukaemia. Nature 1998, 391, 811−814.
(8) Grignani, F.; De Matteis, S.; Nervi, C.; Tomassoni, L.; Gelmetti,
V.; Cioce, M.; Fanelli, M.; Ruthardt, M.; Ferrara, F. F.; Zamir, I.;
Seiser, C.; Lazar, M. A.; Minucci, S.; Pelicci, P. G. Fusion proteins of
the retinoic acid receptor-alpha recruit histone deacetylase in
promyelocytic leukaemia. Nature 1998, 391, 815−818.
(9) Khan, M. M.; Nomura, T.; Chiba, T.; Tanaka, K.; Yoshida, H.;
Mori, K.; Ishii, S. The fusion oncoprotein PML-RAR induces
endoplasmic reticulum (ER)-associated degradation of N-CoR and
ER stress. J. Biol. Chem. 2004, 279, 11814−11824.
(10) Verfaillie, T.; Garg, A. D.; Agostinis, P. Targeting ER stress
induced apoptosis and inflammation in cancer. Cancer Lett. 2010, 332,
249−264.
(11) Schonthal, A. H. Pharmacological targeting of endoplasmic
reticulum stress signaling in cancer. Biochem. Pharmacol. 2013, 85,
653−666.
(12) Ng, A. P. P.; Howe Fong, J.; Sijin Nin, D.; Hirpara, J. L.; Asou,
N.; Chen, C. S.; Pervaiz, S.; Khan, M. Cleavage of misfolded nuclear
receptor corepressor confers resistance to unfolded protein response-
induced apoptosis. Cancer Res. 2006, 66, 9903−9912.
(13) Lane, A. A.; Ley, T. J. Neutrophil elastase cleaves PML-
RARalpha and is important for the development of acute
promyelocytic leukemia in mice. Cell 2003, 115, 305−318.
(14) Lane, A. A.; Ley, T. J. Neutrophil elastase is important for PML-
retinoic acid receptor activities in early myeloid cells. Mol. Cell. Biol.
2004, 25, 23−33.
(15) Szegezdi, E.; Logue, S. E.; Gorman, A. M.; Samali, A. Mediators
of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006,
7, 880−885.
(16) Ng, A. P. P.; Chng, W. J.; Khan, M. Curcumin sensitizes acute
promyelocytic leukemia cells to unfolded protein response-induced
apoptosis by blocking the loss of misfolded N-CoR protein. Mol.
Cancer Res. 2011, 9, 1−11.
(17) Luo, B.; Lee, A. S. The critical roles of endoplasmic reticulum
chaperones and unfolded protein response in tumorigenesis and
anticancer therapies. Oncogene 2013, 32, 805−818.
(33) Nason-Burchenal, K.; Maerz, W.; Albanell, J.; Allopenna, J.;
Martin, P.; Moore, M. A.; Dmitrovsky, E. Common defects of different
retinoic acid resistant promyelocytic leukemia cells are persistent
telomerase activity and nuclear body disorganization. Differentiation
1997, 61, 321−311.
(18) Pae, H. O.; Jeong, S. O.; Jeong, G. S.; Kim, K. M.; Kim, H. S.;
Kim, S. A.; Kim, Y. C.; Kang, S. D.; Kim, B. N.; Chung, H. T.
Curcumin induces pro-apoptotic endoplasmic reticulum stress in
human leukemia HL-60 cells. Biochem. Biophys. Res. Commun. 2007,
353, 1040−1045.
(34) Liang, G.; Shao, L.; Wang, Y.; Zhao, C.; Chu, Y.; Xiao, J.; Zhao,
Y.; Li, X.; Yang, S. Exploration and synthesis of curcumin analogues
with improved structural stability both in vitro and in vivo as cytotoxic
agents. Bioorg. Med. Chem. 2009, 17, 2623−2631.
(35) Hasima, N.; Aggarwal, B. B. Targeting proteasomal pathways by
dietary curcumin for cancer prevention and treatment. Curr. Med.
Chem. 2014, 21, 1583−1594.
(19) Ip, S. W.; Wu, S. Y.; Yu, C. C.; Kuo, C. L.; Yu, C. S.; Yang, J. S.;
Lin, Z. P.; Chiou, S. M.; Chung, H. K.; Ho, H. C.; Chung, J. G.
Induction of apoptotic death by curcumin in human tongue squamous
cell carcinoma SCC-4 cells is mediated through endoplasmic reticulum
stress and mitochondrial-dependent pathways. Cell Biochem. Funct.
2011, 29, 641−650.
(36) MacManus, J. P.; Brewer, L. M.; Whitfield, J. F. The widely-
distributed tumor protein, oncomodulin, is a normal constituent of
human and rodent placentas. Cancer Lett. 1985, 27, 145−151.
(37) Balakrishnan, M. P.; Cilenti, L.; Ambivero, C.; Goto, Y.; Takata,
M.; Turkson, J.; Li, X. S.; Zervos, A. S. THAP5 is a DNA-binding
transcriptional repressor that is regulated in melanoma cells during
(20) Wang, L.; Wang, L.; Song, R.; Shen, Y.; Sun, Y.; Gu, Y.; Shu, Y.;
Xu, Q. Targeting sarcoplasmic/endoplasmic reticulum Ca(2)+-ATPase
N
dx.doi.org/10.1021/jm401352a | J. Med. Chem. XXXX, XXX, XXX−XXX