Organic Letters
Letter
BuLi/TMEDA should lead to Boc-coordinated η3-allyllithium
compound A, on the basis of the X-ray diffraction and NMR
studies of the analogous sparteine complex isolated by Beak and
co-workers.9 In contrast, allylzinc compounds have been recently
shown to exhibit η1-allyl and not η3-allyl coordination.10 On this
basis, transmetalation of A with zinc chloride is proposed to give
rise to Boc-coordinated η1-allylzinc compound B and/or C, by
analogy with related organotin and organosilicon compounds.4c
Subsequent transmetalation with the organopalladium species
ArPdIIBrL, arising from oxidative addition of ArBr to
monoligated Pd0L,11 should furnish η3-allylpalladium complex
D.12 Reductive elimination from D at the least hindered γ-
position would furnish the observed γ-arylated product. The γ-
arylation selectivity and the E-diastereoselectivity observed in the
current reaction are both consistent with an η3-allylpalladium
intermediate D rather than an η1-allyl coordination mode
(analogous to B and C with Pd instead of Zn).
The α,β-unsaturated γ-arylated enecarbamates obtained
through the current method are isomeric to compounds obtained
by Heck-type reactions, in which the double bond is located at
the β,γ-position and the aryl group at the β- or γ-position,13 and
therefore both cross-coupling methods are complementary. In
the present case, the coupling products can be further derivatized
to access valuable organic intermediates (Scheme 4). First,
ASSOCIATED CONTENT
* Supporting Information
Full characterization of all new compounds, detailed exper-
imental procedures, and copies of NMR spectra for target
molecules. This material is available free of charge via the
■
S
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Agence Nationale de la Recherche (programme blanc
“EnolFun”) and Institut Universitaire de France for financial
support.
REFERENCES
■
(1) (a) Campos, K. R.; Klapars, A.; Waldman, J. H.; Dormer, P. G.;
Chen, C.-y. J. Am. Chem. Soc. 2006, 128, 3538. (b) Coldham, I.; Leonori,
D. Org. Lett. 2008, 10, 3923. (c) Beng, T. K.; Gawley, R. E. Org. Lett.
2011, 13, 394. (d) Seel, S.; Thaler, T.; Takatsu, K.; Zhang, C.; Zipse, H.;
Straub, B. F.; Mayer, P.; Knochel, P. J. Am. Chem. Soc. 2011, 133, 4774.
(e) Millet, A.; Dailler, D.; Larini, P.; Baudoin, O. Angew. Chem., Int. Ed.
2014, 53, 2678.
(2) Millet, A.; Larini, P.; Clot, E.; Baudoin, O. Chem. Sci. 2013, 4, 2241.
(3) For the example of cinacalcet, a calcimimetic drug, see: Shinde, G.
B.; Niphade, N. C.; Deshmukh, S. P.; Toche, R. B.; Mathad, V. T. Org.
Process Res. Dev. 2011, 15, 455.
Scheme 4. Postfunctionalizations of γ-Arylated
Enecarbamates
(4) Selected references: (a) Weisenburger, G. A.; Beak, P. J. Am. Chem.
Soc. 1996, 118, 12218. (b) Park, Y. S.; Weisenburger, G. A.; Beak, P. J.
Am. Chem. Soc. 1997, 119, 10537. (c) Weisenburger, G. A.; Faibish, N.
C.; Pippel, D. J.; Beak, P. J. Am. Chem. Soc. 1999, 121, 9522. (d) Whisler,
M. C.; Vaillancourt, L.; Beak, P. Org. Lett. 2000, 2, 2655. (e) Johnson, T.
A.; Curtis, M. D.; Beak, P. J. Am. Chem. Soc. 2001, 123, 1004. (f) Whisler,
M. C.; Beak, P. J. Org. Chem. 2003, 68, 1207. (g) Lee, S. J.; Beak, P. J. Am.
Chem. Soc. 2006, 128, 2178.
(5) For the linear-selective Negishi coupling of γ,γ-disubstituted
allylzinc reagents, see: Yang, Y.; Mustard, T. J. L.; Cheong, P. H.-Y.;
Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 14098.
(6) See the Supporting Information.
(7) Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. Chem. Sci. 2013, 4, 916.
(8) The remaining mass balance included Z isomer 2b and the
coupling product of n-BuZnCl, i. e., 1-(n-butyl)-4-trifluoromethylben-
zene.
(9) (a) Pippel, D. J.; Weisenburger, G. A.; Wilson, S. R.; Beak, P. Angew.
Chem., Int. Ed. 1998, 37, 2522. (b) Pippel, D. J.; Weisenburger, G. A.;
Faibish, N. C.; Beak, P. J. Am. Chem. Soc. 2001, 123, 4919.
(10) (a) Lichtenberg, C.; Engel, J.; Spaniol, T. P.; Englert, U.; Raabe,
G.; Okuda, J. J. Am. Chem. Soc. 2012, 134, 9805. (b) Lichtenberg, C.;
Spaniol, T. P.; Okuda, J. Angew. Chem., Int. Ed. 2012, 51, 8101.
(11) (a) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47,
6338. (b) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2011, 2, 27.
(12) For the X-ray structure of Pd(L1)(η3-crotyl)Cl: Faller, J. W.;
Sarantopoulos, N. Organometallics 2004, 23, 2179.
a
Yield for two steps (arylation and hydrolysis).
hydrogenation of the CC bond of 2a provided γ-aryl-Boc-
amine 21, thereby nicely complementing our previously
described α- and β-arylation of saturated acyclic Boc-amines.1e
In addition, acidic hydrolysis of the enecarbamate group of 2a
furnished β-arylated aldehyde 22a in 94% yield. The γ-arylation/
hydrolysis sequence could be also conducted without isolation of
the enecarbamate intermediate, as illustrated with the synthesis
of aldehydes 22a−d in 53%−62% overall yield from the
corresponding aryl bromides. Thus, the current method provides
a novel and rapid entry into this useful class of aldehydes.
In conclusion, we have developed a new method allowing the
selective γ-arylation of Boc-protected allylamines via a one-pot
lithiation/transmetalation/cross-coupling sequence. This meth-
od is complementary to previously reported α- and β-arylations
of Boc-amines. High E-stereoselectivity was achieved through the
proper choice of a phosphine ligand in the coupling step. A
variety of arylated products were obtained in moderate to good
yield, and the products could be easily transformed into valuable
γ-arylamines and β-aryl aldehydes.
(13) (a) Dong, Y.; Busacca, C. A. J. Org. Chem. 1997, 62, 6464.
(b) Olofsson, K.; Sahlin, H.; Larhed, M.; Hallberg, A. J. Org. Chem. 2001,
66, 544. (c) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Sferrazza, A. Org.
Biomol. Chem. 2011, 9, 1727. (d) Prediger, P.; Barbosa, L. F.; Gen
́
isson,
Y.; Correia, C. R. D. J. Org. Chem. 2011, 76, 7737.
4000
dx.doi.org/10.1021/ol5018257 | Org. Lett. 2014, 16, 3998−4000