Organic & Biomolecular Chemistry
Page 4 of 5
COMMUNICATION
DOI: 10.1039/C4OB00862F
In conclusion, we have disclosed a convenient and efficient
construction of CꢀO bonds via oxidative crossꢀcoupling
reaction of aldehydes and ethers. When 2 mol % copper
catalyst was used, the expected product αꢀacyloxy ether was
obtained with up to 93% yield. Moreover, these reactions
proceeded smoothly under open air and the presence of
moisture did not affected the yields. This is very different from
traditional transitionꢀmetalꢀcatalyzed reactions. Ongoing
investigations focus on the extension of substrate scopes and
asymmetric versions of the reaction in our laboratory.
125, 15312; (b) Z. Li, C. J. Li, J. Am. Chem. Soc., 2004, 126, 11810;
(c) Z. Li, C. J. Li, J. Am. Chem. Soc., 2005, 127, 3672; (d) S. I.
Murahashi, T. Nakae, H. Terai, N. Komiya, J. Am. Chem. Soc., 2008,
130, 11005; (e) D. Sureshkumar, A. Sud, M. Klussmann, Synlett
2009, 1558; (f) S. Singhal, S. L. Jain, B. Sain, Chem. Commun., 2009,
2371; (g) F. Yang, J. Li, J. Xie, Z. Z. Huang, Org. Lett., 2010, 12
,
,
5214; (h) D. P. Hari, B. Konig, Org. Lett., 2011, 13, 3852; (i) E.
Boess, D. Sureshkumar, A. Sud, C. Wirtz, C. Fares, M. Klussmann, J.
Am. Chem. Soc., 2011, 133, 8106; (j) E. Boess, C. Schmitz, M.
Klussmann, J. Am. Chem. Soc., 2012, 134, 5317.
4
For representative oxidative couplings of ethers, see: (a) Y. Zhang and
C. J. Li, J. Am. Chem. Soc., 2006, 128, 4242; (b) C. A. Correia, C. J.
Li, Heterocycles, 2010, 82, 555; (c) M. Ghobrial, M. Schnurch, M. D.
Mihovilovic, J. Org. Chem., 2011, 76, 8781; (d) S. J. Park, J. R. Price,
M. H. Todd, J. Org. Chem., 2012, 77, 949; (e) D. J. Clausen, P. E.
Floreancig, J. Org. Chem., 2012, 77, 6574; (f) X. G. Liu, B. Sun, Z. Y.
Xie, X. J. Qin, L. Liu, H. X. Lou, J. Org. Chem., 2013, 78, 3104; (g)
Acknowledgements
This work was supported by grants from National Nature
Science Foundation of China (No. 21302013), Nature Science
Foundation of Jiangsu Province (No. BK2012207) and Nature
Science Foundation of Jiangsu Educational Department (No.
12KJA150001 and 12KJB150001).
Y. Cui, L. A. Villafane, D. J. Clausen, P. E. Floreancig, Tetrahedron
2013, 69, 7618.
,
Notes and references
1
For reviews on this topic, see: (a) S. S. Stahl, J. A. Labinger, J. E. 5 (a) China cooperative research group on qinghaosu, Kexue Tongbao
,
Bercaw, Angew. Chem. Int. Ed., 1998, 37, 2180; (b) K. Godula, D.
Sames, Science, 2006, 312, 67; (c) B. J. Li, S. D. Yang, Z. J. Shi,
Synlett, 2008, 949; (d) H. M. L. Davies, J. R. Manning, Nature, 2008,
1977, 22, 142; (b) M. C. de La Torre, G. Domnguez, B. Rodrlguez, A.
Perales, M. S. J. Simmonds, W. M. Blaney, Tetrahedron, 1994, 50
,
,
13553; (c) H. J. Wu, S. H. Tsai, J. H. Chern, H. C. Lin, J. Org. Chem.
451, 417; (e) O. Daugulis, H. Q. Do, D. Shabashov, Acc. Chem. Res.
,
1997, 62, 6367; (d) R. K. Haynes, H. W. Chan, M. K. Cheung, W. L.
Lam, M. K. Soo, H. W. Tsang, A. Voerste, I. D. Williams, Eur. J.
Org. Chem., 2002, 113; (e) X. Su, D. S. Surry, R. J. Spandl, D. R.
Spring, Org. Lett., 2008, 10, 2593; (f) C. Singh, S. Chaudhary, S. K.
Puri, Bioorg. Med. Chem. Lett., 2008, 18, 1436; (g) L. Cirillo, E.
Bedini, M. Parrilli, Eur. J. Org. Chem., 2008, 5704; (h) H. Takamura,
S. Kikuchi, Y. Nakamura, Y. Yamagami, T. Kishi, I. Kadota, Y.
Yamamoto, Org. Lett., 2009, 11, 2531; (i) M. A. A. Orabi, S.
Taniguchi, M. Yoshimura, T. Yoshida, K. Kishino, H. Sakagami, T.
Hatano, J. Nat. Prod., 2010, 73, 870.
2009, 42, 1074; (f) X. Chen, K. M. Engle, D. H. Wang, J. Q. Yu,
Angew. Chem. Int. Ed., 2009, 48, 5094; (g) L. Ackermann, R. Vicente,
A. R. Kapdi, Angew. Chem. Int. Ed., 2009, 48, 9792; (h) T. W. Lyons,
M. S. Sanford, Chem. Rev., 2010, 110, 1147; (i) G. E. Dobereiner, R.
H. Crabtree, Chem. Rev., 2010, 110, 681; (j) D. A. Colby, R. G.
Bergman, J. A. Ellman, Chem. Rev., 2010, 110, 624; (k) I. A. I.
Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig,
Chem. Rev., 2010, 110, 890.
2
For representative examples on CꢀC or CꢀX bond formation by using a
CDC reaction, see: (a) Y. Zhang, C. J. Li, Angew. Chem. Int. Ed.
,
,
6
7
M. A. Huffman, J. H. Smitrovich, J. D. Rosen, G. N. Boice, C. Qu, T.
D. Nelson, J. M. McNamara, J. Org. Chem., 2005, 70, 4409.
(a) C. D. Hurd, F. O. Green, J. Am. Chem. Soc., 1941, 63, 2201; (b) R.
K. Summerbell, H. E. Lunk, J. Am. Chem. Soc., 1958, 80, 604; (c) B.
B. Corson, H. E. Tiefenthal, W. J. Heintzelman, J. Org. Chem., 1956,
21, 371.
2006, 45, 1949; (b) Y. Zhang, C. J. Li, J. Am. Chem. Soc., 2006, 128
4242; (c) O. Basle, C. J. Li, Green Chem., 2007, 9, 1047; (d) Z. Li, L.
Cao, C. J. Li, Angew. Chem. Int. Ed., 2007, 46, 6505; (e) Z. Li, H. Li,
X. Guo, L. Cao, R. Yu, H. Li, S. Pan, Org. Lett., 2008, 10, 803; (f) Z.
Li, R. Yu, H. Li, Angew. Chem. Int. Ed., 2008, 47, 7497; (g) L. Wang,
H. Fu, Y. Jiang, Y. Zhao, Chem. Eur. J., 2008, 14, 10722; (h) Z. 8 (a) L. Chen, E. Shi, Z. Liu, S. Chen, W. Wei, H. Li, K. Xu, X. Wan,
Wang, Y. Zhang, H. Fu, Y. Jiang, Y. Zhao, Org. Lett., 2008, 10, 1863;
(i) C. J. Li, Acc. Chem. Res., 2009, 42, 335; (j) Z. Shi, C. Zhang, S. Li,
Chem. Eur. J., 2011, 17, 4085; (b) Z. Liu, L. Zhao, X. Shang, Z. Cui,
Org. Lett., 2012, 14, 3218; (c) S. Zhang, L. Guo, H. Wang, X. Duan,
Org. Biomol. Chem., 2013, 11, 4308; (d) S. Priyadarshini, P. J. Amal
D. Pan, S. Ding, Y. Cui, N. Jiao, Angew. Chem. Int. Ed., 2009, 48
,
4572; (k) Y. Z. Li, B. J. Li, X. Y. Lu, S. Lin, Z. J. Shi, Angew. Chem.
Int. Ed., 2009, 48, 3817; (l) O. Basle, C. J. Li, Chem. Commun., 2009,
4124; (m) W. J. Yoo, C. A. Correia, Y. Zhang, C. J. Li, Synlett, 2009,
138; (n) Y. Shen, M. Li, S. Wang, T. Zhan, Z. Tan, C. Guo, Chem.
Commun., 2009, 953; (o) P. P. Pradhan, J. M. Bobbitt, W. F. Bailey, J.
Org. Chem., 2009, 74, 9524; (p) F. Benfatti, M. G. Capdevila, L. Zoli,
E. Benedetto, P. G. Cozzi, Chem. Commun., 2009, 5919; (q) H.
Richter, O. G. Mancheno, Eur. J. Org. Chem., 2010, 4460; (r) A.
Pinter, A. Sud, D. Sureshkumar, M. Klussmann, Angew. Chem. Int.
Joseph, M. Lakshmi Kantam, RSC Adv., 2013, 3, 18283; (e) S. K.
Rout, S. Guin, W. Ali, A. Gogoi, B. K. Patel, Org. Lett., Article
ASAP, DOI: 10.1021/ol5011906.
9
(a) S. F. Yip, H. Y. Cheung, Z. Zhou, F. Y. Kwong, Org. Lett., 2007,
9, 3469; (b) H. Q. Do, O. Daugulis, J. Am. Chem. Soc., 2008, 130
,
1128; (c) L. Zhao, C. J. Li, Angew. Chem., Int. Ed., 2008, 47, 7075;
(d) D. Monguchi, T. Fujiwara, H. Furukawa, A. Mori, Org. Lett.
2009, 11, 1607; (e) C. Zhang, C. Tang, N. Jiao, Chem. Soc. Rev.
2012, 41, 3464.
,
,
Ed., 2010, 49, 5004; (s) C. J. Scheuermann, Chem. Asian J., 2010,
5
,
10 A. John, K. M. Nicholas, J. Org. Chem., 2011, 76, 4158.
436.
11 W. E. Cass, J. Am. Chem. Soc., 1947, 69, 500.
3
For representative oxidative coupling reactions of amines, see: (a) S. I. 12 (a) T. K. M. Shing, Y. Yeung, P. L. Su, Org. Lett., 2006,
8
, 3149; (b)
Murahashi, N. Komiya, H. Terai, T. Nakae, J. Am. Chem. Soc., 2003,
N. Turra, U. Neuenschwander, A. Baiker, J. Peeters, I. Hermans,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 2012