ChemComm
Communication
reacts with ethers via hydride abstraction and instalment of a
phosphoniumyl-substituent on an a-carbon atom. This reaction
constitutes a rare example of FLP-mediated C–H bond activation.20
While previous studies have illustrated the ability of FLPs to effect
both ether C–O and aromatic20b or allylic20a C–H activations, the
present results are the first to demonstrate that judicious selection
of the Lewis acid/base composition of an FLP provides an avenue for
selective reactivity of one class of substrates. We are currently
exploring the impact of varying the Lewis acid in the reactivity of
FLPs with other substrates and on catalysis.
NSERC of Canada, the German Science Foundation (DFG,
WE 4621/2-1) and the ERC (SynPhos 307616) is thanked for
financial support. DWS is grateful for the award of a Canada
Research Chair. TM is grateful for an NSERC CGS-D. MHH
is grateful for a scholarship by the Fonds der Chemischen
Industrie.
Notes and references
1 J. G. de Vries and C. J. Elsevier, The Handbook of homogeneous
Hydrogenation, Wiley-VCH, Weinheim, 2007.
2 (a) G. Erker and D. W. Stephan, Frustrated Lewis Pairs I: Uncovering
and Understanding, Topics in Current Chemistry, 332, Springer
Verlag, 2013; (b) G. Erker and D. W. Stephan, Frustrated Lewis
Pairs II: Expanding the Scope, Topics in Current Chemistry 334,
Springer Verlag, 2013.
3 B. H. Xu, R. A. A. Yanez, H. Nakatsuka, M. Kitamura, R. Frohlich,
G. Kehr and G. Erker, Chem. – Asian J., 2012, 7, 1347–1356.
4 R. C. Neu, The Activation of Small Molecules Employing Main Group
and Transition Metal Frustrated Lewis Pairs, thesis dissertation, 2012,
pp. 27–28.
5 L. J. Hounjet, C. Bannwarth, C. N. Garon, C. B. Caputo, S. Grimme
and D. W. Stephan, Angew. Chem., Int. Ed., 2013, 52, 7492–7495.
6 G. C. Welch, J. D. Masuda and D. W. Stephan, Inorg. Chem., 2006, 45,
478–480.
7 B. Birkmann, T. Voss, S. J. Geier, M. Ullrich, G. Kehr, G. Erker and
D. W. Stephan, Organometallics, 2010, 29, 5310–5319.
8 L. L. Adduci, M. P. McLaughlin, T. A. Bender, J. J. Becker and
Scheme 2 Isomerization of FLP 4 to 40; equilibrium dissociation of 4 to
[Ph3C][X] and t-Bu2PH and compounds 5–12 obtained in the reaction of
FLP 4 with (thio)ethers. X = OSO2CF3 or B(C6F5)4. a Yield determined by
integration of all resonances in the 1H and 31P NMR spectra of the reaction
mixture. b Isolated yield. c Obtained as the free phosphine.
´
M. R. Gagne, Angew. Chem., Int. Ed., 2014, 53, 1646–1649.
9 G. Wittig and A. Ru¨ckert, Liebigs Ann. Chem., 1950, 566, 101–113.
10 T. L. Breen and D. W. Stephan, Inorg. Chem., 1992, 31, 4019–4022.
11 (a) L. R. Avens, D. M. Barnhart, C. J. Burns and S. D. McKee, Inorg.
Chem., 1996, 35, 537–539; (b) M. P. C. Campello, A. Domingos and
I. Santos, J. Organomet. Chem., 1994, 484, 37–46.
12 W. J. Evans, J. T. Leman, J. W. Ziller and S. I. Khan, Inorg. Chem.,
1996, 35, 4283–4291.
13 A. Mommertz, R. Leo, W. Massa, K. Harms and K. Z. Dehnicke,
Z. Anorg. Allg. Chem., 1998, 624, 1647–1652.
14 (a) Z. Y. Guo, P. K. Bradley and R. F. Jordan, Organometallics, 1992, 11,
¨
2690–2693; (b) M. Polamo, I. Mutikainen and M. Leskela, Acta Crystallogr.,
Sect. C: Cryst. Struct. Commun., 1997, 53, 1036–1037.
15 M. Gomez-Saso, D. F. Mullica, E. Sappenfield and F. G. A. Stone,
Polyhedron, 1996, 15, 793–801.
16 J. P. Campbell and W. L. Gladfelter, Inorg. Chem., 1997, 36, 4094–4098.
17 (a) T. Chivers and G. Schatte, Eur. J. Inorg. Chem., 2003, 3314–3317;
(b) S. M. Kunnari, R. Oilunkaniemi, R. S. Laitinen and M. Ahlgren,
Dalton Trans., 2001, 3417–3418.
18 (a) H. Hoffmann and P. Schellenbeck, Chem. Ber., 1966, 99, 1134–1142;
(b) J. R. Sanders, J. Chem. Soc., Dalton Trans., 1973, 743–747; (c) J. B.
Lambert and J.-H. So, J. Org. Chem., 1991, 56, 5960–5962; (d) X. Fang,
B. L. Scott, K. D. John, G. J. Kubas and J. G. Watkin, New J. Chem., 2000,
24, 831–833.
Scheme 3 Synthetic route to phosphines 13–15.
19 (a) G. Bidan and M. Genies, Tetrahedron Lett., 1978, 28, 2499–2502;
(b) L. Cabrera, G. C. Welch, J. D. Masuda, P. Wei and D. W. Stephan,
Inorg. Chim. Acta, 2006, 359, 3066–3071.
20 (a) G. Menard and D. W. Stephan, Angew. Chem., Int. Ed., 2012, 51,
4409–4412; (b) K. Groll, S. M. Manolikakes, X. Mollat du Jourdin,
M. Jaric, A. Bredihhin, K. Karaghiosoff, T. Carell and P. Knochel,
Angew. Chem., Int. Ed., 2013, 52, 6776–6780 and references therein.
In conclusion, we have uncovered distinct reaction pathways
for the FLP-mediated transformation of ethers. Oxophilic B(C6F5)3
reacts via coordination to the oxygen donor and initiates reaction
sequences which involve heterolytic C–O bond cleavage. In contrast,
the FLP system 4, which is based on a hydridophilic tritylium ion,
10040 | Chem. Commun., 2014, 50, 10038--10040
This journal is ©The Royal Society of Chemistry 2014