10.1002/anie.201813278
Angewandte Chemie International Edition
COMMUNICATION
1a
Lett. 2003, 44, 8665. d) Q.-S. Liu, D.-Y. Wang, J.-F. Yang, Z.-Y. Ma, M.
Ye, Tetrahedron 2017, 73, 3591.
[a]
[c]
[b]
H3B
[6]
[7]
[8]
[9]
K. Crawford, T. Ramseyer, C. Daley, T. Clark, Angew. Chem., Int. Ed.
2014, 53, 7589.; Angew. Chem. 2014, 126, 7719.
PPh2
PPh2
PPh2
PPh2
BF3– K+
B(OH)2
Ph
OH
[d]
X. Qiu, M. Wang, Y. Zhao, Z. Shi, Angew. Chem., Int. Ed. 2017, 56,
7233.; Angew. Chem. 2017, 129, 7339.
X. Luo, J. Yuan, C.-D. Yue, Z.-Y. Zhang, J. Chen, G.-A. Yu, C.-M. Che,
Org. Lett. 2018, 20, 1810.
14 quant.
15 quant.
16 65%
(86% brsm[e]
17 47%
)
a) Tobisu and Chatani reported Pd-catalyzed intramolecular cyclization
of biarylphosphines to give phosphole derivatives via phosphonium
intermediates. K. Baba, M. Tobisu, N. Chatani, Angew. Chem., Int. Ed.
2013, 52, 11892.; Angew. Chem. 2013, 125, 12108. b) Wang reported
Cu-catalyzed intramolecular cyclization reactions of tertiary phosphines
with alkynes to give cyclic phosphonium compounds. Q. Ge, J. Zong, B.
Li, B. Wang, Org. Lett. 2017, 19, 6670.
[a] 1) BH3•thf, 2) H2O2, NaOH aq., rt, 12 h. [b] KHF2, MeOH, rt, 3 h. [c]
(HOCH2CH2)2NH, Et2O, rt, 18 h. [d] Pd(dba)2 (10 mol%), SPhos (12 mol%),
PhI (1.5 equiv), K3PO4 (1.5 equiv), 1,4-dioxane, 100 ˚C, 6 h. [e] Based on
recovered starting material.
Scheme 3. Transformation of 1a.
[10] a) I. Mkhalid, J. Barnard, T. Marder, J. Murphy, J. Hartwig, Rev. 2010,
110, 890. b) L. Xu, G. Wang, S. Zhang, H. Wang, L. Wang, L. Liu, J.
Jiao, P. Li, Tetrahedron 2017, 73, 7123.
In conclusion, we have developed Ru-catalyzed, phosphine-
directed ortho sp2C–H borylation of arylphosphines for the first
time.[21] The high efficiency and wide substrate generality
[11] CAUTION! This reaction should be conducted inside an explosion-proof
wall. This is performed in a sealed glass tube at 100 ˚C which is over
the boiling point of benzene, and H2 is generated during the reaction.
[12] a) G. Battagliarin, C. Li, V. Enkelmann, K. Müllen, Org. Lett. 2011,13,
3012. b) J. Zhang, S. Singh, D. Hwang, S. Barlow, B. Kippelen, S.
Marder, J. Mat. Chem. C 2013, 1, 5093. c) J. Fernández-Salas, S.
Manzini, L. Piola, A. Slawin, S. Nolan, Chem. Commun. 2014, 50, 6782.
d) S. Okada, T. Namikoshi, S. Watanabe, M. Murata, ChemCatChem
2015, 7, 1531. e) S. Sarkar, P. Kumar, L. Ackermann, Chem. Eur. J.
2017, 23, 84. f) Y. Maeda, M. Sato, S. Okada, M. Murata, Tetrahedron
Lett. 2018, 59, 2537.
enabled
easy
access
to
various
tertiary
(o-
borylphenyl)phosphines, which are highly useful as precursors
to various functionalized phosphines and ambiphilic phosphine-
boronate compounds. These results demonstrated unique
reactivity of the Ru-catalyst for C–H borylation distinct from Ir.
Further utilization of the borylated tertiary phosphines are
underway in our group.
[13] For Ru-catalyzed electrophilic borylation of indoles, see; T. Stahl, K.
Müther, Y. Ohki, K. Tatsumi, M. Oestreich, J. Am. Chem.
Soc. 2013, 135, 10978.
Acknowledgements
[14] The same site-selectivity to give 9 was observed in the Ir-catalyzed
reaction (ref [6]). However, the selective formation of the double
borylation product was not reported with the Ir-catalyst.
This research was supported by JSPS KAKENHI Grant
Numbers 15H05800, 17H03019 (Gran-in-Aid for Scientific
Research (B)), 18H04646 (Hybrid Catalysis), and JST, PRESTO
Grant Number JY290145, Japan.
[15] E. Simmons, J. Hartwig, Angew. Chem., Int. Ed. 2012, 51, 3066.;
Angew. Chem. 2012, 124, 3120.
[16] One of the possible candidates for the rate-determining step could be
the C–B bond forming reductive elimination. In some Ru-catalyzed
sp2C–H bond activation reactions, acceleration of C–C bond forming
reductive elimination with electron-withdrawing substituents on the
arene was reported. See: a) F. Kakiuchi, H. Ohtaki, M. Sonoda, N.
Chatani, S. Murai, Chem. Lett. 2001, 30, 918. b) M. Schinkel, I. Marek,
L. Ackermann, Angew. Chem., Int. Ed. 2013, 52, 3977.; Angew. Chem.
2013, 125, 4069.
Keywords: Phosphine • C–H activation • Borylation • Ruthenium
• Late-stage modification
[1]
[2]
a) S. Xu, Z. He, Rsc Adv. 2013, 3, 16885. b) D. Valentine Jr, J.
Hillhouse, Synthesis 2003, 2003, 317. c) K. Wu, A. Doyle, Nat.
Chem. 2017, 9, 779. d) P. Karanam, G. Reddy, S. Koppolu, W. Lin,
Tetrahedron Lett. 2018, 59, 59.
[17] Y. Kim, R. Jordan, Organometallics 2011, 30, 4250.
[18] T. Barder, S. Walker, J. Martinelli, S. Buchwald, J. Am. Chem.
Soc. 2005, 127, 4685.
a) Z. Zhang, P. Dixneuf, J.-F. Soulé, Chem. Commun. 2018, 54, 7265.
b) A. Ros, R. Fernández, J. M. Lassaletta, Chem. Soc. Rev. 2014, 43,
3229. c) C. Sambiagio, D. Schönbauer, R. Blieck, T. Dao-Huy, G.
Pototschnig, P. Schaaf, T. Wiesinger, M. Zia, J. Wencel-Delord, T.
Besset, B. Maes, M. A. Schnürch, Chem. Soc. Rev. 2018, 47, 6603.
F. Mohr, S. Privér, S. Bhargava, M. Bennett, Coord. Chem.
Rev. 2006, 250, 1851.
[19] For selected examples, see; a) S. Porcel, G. Bouhadir, N. Saffon, L.
Maron, D. Bourissou, Angew. Chem., Int. Ed. 2010, 49, 6186.; Angew.
Chem. 2010, 122, 6322. b) G. Bouhadir, D. Bourissou, In Ligand
Design in Metal Chemistry: Reactivity and Catalysis (Eds.; M. Stradiotto,
R. J. Lundgren), Wiley, 2016; pp. 237–269. c) G. Hirata, H. Satomura,
H. Kumagae, A. Shimizu, G. Onodera, M. Kimura, Org. Lett. 2017, 19,
6148. d) J. Li, C. Daniliuc, G. Kehr, G. Erker, Chem. Commun. 2018, 54,
6344.
[3]
[4]
a) Y. Unoh, Y. Hashimoto, D. Takeda, K. Hirano, T. Satoh, M. Miura,
Org. Lett. 2013, 15, 3258. b) D. Gwon, D. Lee, J. Kim, S. Park, S.
Chang, Chem. Eur. J. 2014, 20, 12421. c) Y. Unoh, T. Satoh, K. Hirano,
M. Miura, ACS Catal. 2015, 5, 6634. d) Y.-N. Ma, S.-X. Li, S.-D. Yang,
Acc. Chem. Res. 2017, 50, 1480. e) Y. Jang, L. Woźniak, J. Pedroni, N.
Cramer, Angew. Chem., Int. Ed. 2018, 57, 12901.; Angew. Chem. 2018,
130, 13083.
[20] (o-Borylphenyl)phosphine derivatives are usually synthesized from (o-
bromophenyl)phosphines via lithiation followed by reaction with boron
electrophiles. See: a) ref 16a). b) T. Hudnall, Y.-M. Kim, M. Bebbington,
D. Bourissou, F. Gabbaï, J. Am. Chem. Soc. 2008, 130, 10890. c)
Synthesis via benzyne is reported, see; J. Bayardon, J. Bernard, E.
Rémond, Y. Rousselin, R. Malacea-Kabbara, S. Jugé, Org.
Lett. 2015, 17, 1216.
[5]
For examples of C–H functionalization using phosphorus moiety as a
removable directing group, see; a) R. Bedford, S. Coles, M. Hursthouse,
M. Limmert, Angew. Chem., Int. Ed. 2003, 42, 112.; Angew. Chem.
2003, 115, 116. b) R. Bedford, M. Limmert, J. Org. Chem. 2003, 68,
8669. c) S. Oi, S. Watanabe, S. Fukita, Y. Inoue, Tetrahedron
[21] Related papers on borylation of tertiary phosphines have appeared
during the revision process, see; a) J. Wen, D. Wang, J. Qian, D. Wang,
C.
Zhu,
Y.
Zhao,
Z.
Shi,
Angew.
Chem.,
Int.
This article is protected by copyright. All rights reserved.