Organic Letters
Letter
(16) For examples of metal-catalyzed/mediated electrophilic fluorina-
tion of arylstannanes, see: (a) Furuya, T.; Strom, A. E.; Ritter, T. J. Am.
Chem. Soc. 2009, 131, 1662−1663. (b) Tang, P.; Furuya, T.; Ritter, T. J.
Am. Chem. Soc. 2010, 132, 12150−12154. (c) Ye, Y.; Sanford, M. S. J. Am.
Chem. Soc. 2013, 135, 4648−4651.
(17) For an example of metal-free electrophilic fluorination of
arylstannanes, see: Bryce, M. R.; Chambers, R. D.; Mullins, S. T.;
Parkin, A. J. Chem. Soc., Chem. Commun. 1986, 1623−1624.
(18) For examples of metal-mediated electrophilic radiofluorination of
arylstannanes, see: Teare, H.; Robins, E. G.; Kirjavainen, A.; Forsback, S.;
Sandford, G.; Solin, O.; Luthra, S. K.; Gouverneur, V. Angew. Chem., Int.
Ed. 2010, 49, 6821−6824.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
WeacknowledgetheNIH(R01EB021155toM.S.S.andP.J.H.S.),
US DOE/NIBIB (DE-SC0012484 to P.J.H.S.), and Merck
(M.S.S. and P.J.H.S.) for financial support. We thank Sydonie
D. Schimler (U. of Michigan) for conducting comparative studies
of the fluorination of p-methoxyphenyl trifluoroborate.
(19) For examples of metal-free electrophilic radiofluorination of
arylstannanes, see: (a) Adam, M. J.; Pate, B. D.; Ruth, T. J.; Berry, J. M.;
Hall,L.D.J.Chem.Soc.,Chem.Commun. 1981,733−733.(b)Adam,M.J.;
Ruth, T. J.; Jivan, S.; Pate, B. D. J. Fluorine Chem. 1984, 25, 329−337.
(c) Coenen, H. H.; Moerlein, S. M. J. Fluorine Chem. 1987, 36, 63−75.
(d)Eskola,O.;Gronroos,T.;Bergman,J.;Haaparanta,M.;Marjamaki,P.;
Lehikoinen, P.; Forsback, S.; Langer, O.; Hinnen, F.; Dolle, F.; Halldin,
C.; Solin, O. Nucl. Med. Biol. 2004, 31, 103−110.
(20) We communicated this Cu-mediated fluorination of arylstannanes
in May 2016; see: Mossine, A.; Makaravage, K.; Ichiishi, N.; Brooks, A.;
Miller, J.; Sanford, M.; Scott, P. J. Nucl. Med. 2016, Vol. 57, (Suppl. 2), pp.
2. Following submission of this manuscript in August 2016, a related
copper-mediated fluorination of arylstannanes using K19F was also
disclosed: Gamache, R. F.; Waldmann, C.; Murphy, J. M. Org. Lett. 2016,
18, 4522−4525.
REFERENCES
■
(1)Brooks,A.F.;Topczewski,J.J.;Ichiishi,N.;Sanford,M.S.;Scott,P.J.
H. Chem. Sci. 2014, 5, 4545−4553.
(2) Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D. Angew. Chem., Int. Ed.
2008, 47, 8998−9033.
(3) Campbell, M. G.; Ritter, T. Chem. Rev. 2015, 115, 612−633.
(4) Preshlock, S.; Tredwell, M.; Gouverneur, V. Chem. Rev. 2016, 116,
719−766.
(5) For recent examples of uncatalyzed nucleophilic radiofluorinations
of arenes, see: (a) Mu, L.; Fischer, C. R.; Holland, J. P.; Becaud, J.;
Schubiger, P. A.; Schibli, R.; Ametamey, S. M.; Graham, K.; Stellfeld, T.;
Dinkelborg, L. M.; Lehmann, L. Eur. J. Org. Chem. 2012, 2012, 889−892.
(b) Rotstein, B. H.; Stephenson, N. A.; Vasdev, N.; Liang, S. H. Nat.
Commun. 2014, 5, 4365−4371. (c) Stephenson, N. A.; Holland, J. P.;
Kassenbrock, A.; Yokell, D. L.; Livni, E.; Liang, S. H.; Vasdev, N. J. Nucl.
Med. 2015, 56, 489−492. (d) Rotstein, B. H.; Wang, L.; Liu, R. Y.;
Patteson, J.; Kwan, E. E.; Vasdev, N.; Liang, S. H. Chem. Sci. 2016, 7,
4407−4417. (e) Neumann, C. N.; Hooker, J. M.; Ritter, T. Nature 2016,
534, 369−373.
(21)Ye,Y.;Schimler,S.D.;Hanley,P.S.;Sanford,M.S.J.Am.Chem.Soc.
2013, 135, 16292−16295.
(22) For enhancement in Cu-mediated electrophilic fluorination of
arylstannanesversusarylboroncompounds,seeref16candcomparewith
ref 6e.
(6) For recent examples of metal-mediated nucleophilic radio-
fluorination of arenes, see: (a) Lee, E.; Kamlet, A. S.; Powers, D. C.;
Neumann,C.N.;Boursalian,G.B.;Furuya,T.;Choi,D.C.;Hooker,J.M.;
Ritter,T.Science2011,334,639−642.(b)Lee,E.;Hooker,J.M.;Ritter,T.
J. Am. Chem. Soc. 2012, 134, 17456−17458. (c) Tredwell, M.; Preshlock,
S. M.; Taylor, N. J.; Gruber, S.; Huiban, M.; Passchier, J.; Mercier, J.;
Genicot, C.;Gouverneur, V. Angew. Chem., Int. Ed. 2014, 53, 7751−7755.
(d) Ichiishi, N.; Brooks, A. F.; Topczewski, J. J.; Rodnick, M. E.; Sanford,
M. S.; Scott, P. J. H. Org. Lett. 2014, 16, 3224−3227. (e) Mossine, A. V.;
Brooks, A. F.; Makaravage, K. J.; Miller, J. M.; Ichiishi, N.; Sanford, M. S.;
Scott, P. J. H. Org. Lett. 2015, 17, 5780−5783. (f) Zlatopolskiy, B. D.;
Zischler, J.;Krapf, P.;Zarrad, F.;Urusova, E. A.;Kordys, E.;Endepols, H.;
Neumaier, B. Chem. - Eur. J. 2015, 21, 5972−5979. (g) Hoover, A. J.;
Lazari, M.; Ren, H.; Narayanam, M. K.; Murphy, J. M.; van Dam, R. M.;
Hooker, J. M.; Ritter, T. Organometallics 2016, 35, 1008−1014.
(7) Farina, V.; Krishnamurthy, V.; Scott, W. J. Org. React. 1997, 50, 1−
384.
(8) Qiu, D.; Meng, H.; Jin, L.; Wang, S.; Tang, S.; Wang, X.; Mo, F.;
Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2013, 52, 11581−11584.
(9) TriBoc-L-DOPA methyl ester is commercially available from ABX
(CAS no. 857502-21-7).
(10) Flemming, I., Allylsilanes, Allylstannanes, and Related Systems. In
Comprehensive Organic Synthesis, 2nd ed.; Knochel, P., Molander, G., Ed.;
Elsevier, 2014; Vol. 2, pp 72−147.
(11) Molloy, K. C., Organometallic Compounds of Tetravalent Tin. In
Chemistry of Tin, 2nd ed.; Smith, P. J., Ed.; Chapman & Hall: London,
1998; pp 138−175.
(12) Cools, R.; Frank, M. J.; Gibbs, S. E.; Miyakawa, A.; Jagust, W.;
D’Esposito, M. J. Neurosci. 2009, 29, 1538−1543.
(13) Li, C. T.; Palotti, M.; Holden, J. E.; Oh, J.; Okonkwo, O.; Christian,
B. T.;Bendlin, B. B.;Buyan-Dent, L.;Harding, S. J.;Stone, C. K.;Dejesus,
O. T.; Nickles, R. J.; Gallagher, C. L. Synapse 2014, 68, 325−331.
(14) Gallagher, C. L.; Christian, B. T.; Holden, J. E.; Dejesus, O. T.;
Nickles, R. J.; Buyan-Dent, L.; Bendlin, B. B.; Harding, S. J.; Stone, C. K.;
Mueller, B.; Johnson, S. C. Mov. Disord. 2011, 26, 2032−8.
(15) Ridler, K.; Cunningham, V.; Huiban, M.; Martarello, L.; Pampols-
Maso, S.;Passchier, J.;Gunn,R.N.;Searle,G.;Abi-Dargham,A.;Slifstein,
M.; Watson, J.; Laruelle, M.; Rabiner, E. A. EJNMMI Res. 2014, 4, 1−12.
(23) For enhancement in Ag-mediated electrophilic fluorination of
arylstannanes versus arylborons, see: Huang, C.; Liang, T.; Harada, S.;
Lee, E.; Ritter, T. J. Am. Chem. Soc. 2011, 133, 13308−13310.
(24) Taoufik, M.; Cordonnier, M.-A.; Santini, C. C.; Basset, J.-M.;
Candy, J.-P. New J. Chem. 2004, 28, 1531−1537.
(25) Tredwell, M.; Gouverneur, V. Angew. Chem., Int. Ed. 2012, 51,
11426−11437.
(26) 1.5 Ci of activity at a specific activity of 10000 Ci/mmol
corresponds to 0.170 μmol of fluoride, of which only about 1 nmol is 18F.
(27) Bell, C.; Dowson, N.; Puttick, S.; Gal, Y.; Thomas, P.; Fay, M.;
Smith, J.; Rose, S. Nucl. Med. Biol. 2015, 42, 788−795.
(28) Edwards, R.; Wirth, T. J. Labelled Compd. Radiopharm. 2015, 58,
183−187.
(29) Hamill, T. G.; Krause, S.; Ryan, C.; Bonnefous, C.; Govek, S.;
Seiders, T. J.; Cosford, N. D. P.; Roppe, J.; Kamenecka, T.; Patel, S.;
Gibson, R. E.; Sanabria, S.; Riffel, K.; Eng, W.; King, C.; Yang, X.; Green,
M. D.; O’Malley, S. S.; Hargreaves, R.; Burns, H. D. Synapse 2005, 56,
205−216.
(30) Wang, J.-Q.; Tueckmantel, W.; Zhu, A.; Pellegrino, D.; Brownell,
A.-L. Synapse 2007, 61, 951−961.
(31) Metal-free fluorination of an iodonium ylide afforded 20% RCY;
however, these precursors can be challenging to prepare (ref 5d).
(32) Preshlock, S.; Calderwood, S.; Verhoog, S.; Tredwell, M.; Huiban,
M.; Hienzsch, A.; Gruber, S.; Wilson, T. C.; Taylor, N. J.; Cailly, T.;
Schedler, M.;Collier,T.L.;Passchier, J.;Smits,R.;Mollitor,J.;Hoepping,
A.; Mueller, M.; Genicot, C.; Mercier, J.; Gouverneur, V. Chem. Commun.
2016, 52, 8361−8364.
(33) Kuik, W.-J.; Kema, I. P.; Brouwers, A. H.; Zijlma, R.; Neumann, K.
D.; Dierckx, R. A. J. O.; DiMagno, S. G.; Elsinga, P. H. J. Nucl. Med. 2015,
56, 106−112.
(34) A typical clinical scan uses 10 mCi of [18F]MPPF.
(35) Sanford, M. S.; Scott, P. J. H. ACS Cent. Sci. 2016, 2, 128−130.
(36) Alvarez, M.; Le Bars, D. In Radiochemical Syntheses; John Wiley &
Sons, Inc., 2012; pp 87−94.
(37)Shao,X.;Hoareau,R.;Hockley,B.G.;Tluczek,L.J.M.;Henderson,
B. D.; Padgett, H. C.; Scott, P. J. H. J. Labelled Compd. Radiopharm. 2011,
54, 292−307.
D
Org. Lett. XXXX, XXX, XXX−XXX