Job/Unit: O42068
/KAP1
Date: 03-06-14 19:04:15
Pages: 9
Gold-Catalyzed Intermolecular Hydroamidation
[7]
[8]
[9]
a) H. Davies, J. Briones, J. Am. Chem. Soc. 2013, 135, 13314–
13317; b) W. Zi, D. Toste, J. Am. Chem. Soc. 2013, 135, 12600–
12603.
a) R. A. Widenhoefer, X. Q. Han, Eur. J. Org. Chem. 2006,
4555–4563; b) T. E. Muller, K. C. Hultzsch, M. Yus, F. Foub-
elo, M. Tada, Chem. Rev. 2008, 108, 3795–3892.
a) X. Q. Han, R. A. Widenhoefer, Angew. Chem. Int. Ed. 2006,
45, 1747–1749; Angew. Chem. 2006, 118, 1779–1781; b) Z. B.
Zhang, C. Liu, R. E. Kinder, X. Q. Han, H. Qian, R. A. Wid-
enhoefer, J. Am. Chem. Soc. 2006, 128, 9066–9073; c) J. L.
Mcbee, A. T. Bell, T. D. Tilley, J. Am. Chem. Soc. 2008, 130,
16562–16571.
a) A. K. Mourad, J. Leutzow, C. Czekelius, Angew. Chem. Int.
Ed. 2012, 51, 11149–11152; Angew. Chem. 2012, 124, 11311–
11314; b) M. C. M. Higginbotham, M. W. P. Bebbington,
Chem. Commun. 2012, 48, 7565–7567; c) C. F. Bender, R. A.
Widenhoefer, Org. Lett. 2006, 8, 5303–5305; d) C. F. Bender,
R. A. Widenhoefer, Chem. Commun. 2006, 4143–4144; e) R. E.
Kinder, Z. Zhang, R. A. Widenhoefer, Org. Lett. 2008, 10,
3157–3159; f) Z. Zhang, C. F. Bender, R. A. Widenhoefer, J.
Am. Chem. Soc. 2007, 129, 14148–14149; g) Z. Zhang, C. F.
Bender, R. A. Widenhoefer, Org. Lett. 2007, 9, 2887–2889; h)
Z. Zhang, S. D. Lee, R. A. Widenhoefer, J. Am. Chem. Soc.
2009, 131, 5372–5373; i) P. de Fremont, E. D. Stevens, M. R.
Fructos, D.-R. M. Mar, P. J. Perez, S. P. Nolan, Chem. Com-
mun. 2006, 2045–2047; j) S. Gaillard, J. Bosson, R. S. Ramon,
P. Nun, A. M. Z. Slawin, S. P. Nolan, Chem. Eur. J. 2010, 16,
13729–13740.
chromatography using aluminium oxide as stationary phase
(EtOAc/cyclohexane, 1:9 to 1:4) to give 10 (221 mg, 0.83 mmol,
1
83% yield). H NMR (300 MHz, CDCl3): δ = 7.75 (d, J = 8.0 Hz,
2 H), 7.30 (d, J = 8.0 Hz, 2 H), 4.70 (d, J = 7.2 Hz, 1 H, NH),
3.14–3.08 (m, 1 H, NCH), 2.43 (s, 3 H, CH3), 2.18 (br. s, 1 H), 2.08
2
3
(br. s, 1 H), 1.58 (ddd, 1J = 12.9, J = 8.0, J = 2.5 Hz, 1 H), 1.42–
1.25 (m, 3 H), 1.18–0.91 (m, 4 H) ppm. 13C{1H} NMR (75 MHz):
δ = 143.34, 138.03, 129.79, 127.22, 56.78, 42.60, 40.89, 35.70, 35.30,
28.13, 26.44, 21.67 ppm. MS (EI, 70 eV): m/z (%) = 266.1 (15)
[M + H]+, 265.1 (69) [M]+, 210.0 (30), 184.0 (72), 155.0 (88)
[C7H7O2S]+, 133.0 (26), 110.1 (100) [M–Ts: C7H12N]+, 91 (87)
[C7H7]+, 81.0 (70).
[10]
Supporting Information (see footnote on the first page of this arti-
cle): Synthetic procedures, NMR spectroscopic data, kinetic data,
ESI-MS data, X-ray crystallographic data.
Acknowledgments
Financial support by the DFG-funded transregional collaborative
research center SFB/TRR 88 [Cooperative Effects in Homo- and
Heterometallic Complexes (3MET)] and the Helmholz-Research-
School (Energy-Related Catalysis; doctoral fellowship to C. K.) is
gratefully acknowledged. The Deutsche Forschungsgemeinschaft
(DFG) is acknowledged for a Heisenberg fellowship to J. P.
[11]
[12]
a) J. L. Zhang, C. G. Yang, C. He, J. Am. Chem. Soc. 2006,
128, 1798–1799; b) V. Lavallo, G. D. Frey, B. Donnadieu, M.
Soleilhavoup, G. Bertrand, Angew. Chem. Int. Ed. 2008, 47,
5224–5228.
[1] a) I. Bratko, M. Gomez, Dalton Trans. 2013, 42, 10664–10681;
b) E. K. van den Beuken, B. L. Feringa, Tetrahedron 1998, 54,
12985–13011; c) J. Park, S. Hong, Chem. Soc. Rev. 2012, 41,
6931–6943; d) M. Shibasaki, N. Yoshikawa, Chem. Rev. 2002,
102, 2187–2209.
[2] a) M. E. Broussard, B. Juma, S. G. Train, W. J. Peng, S. A.
Laneman, G. G. Stanley, Science 1993, 260, 1784–1788; b)
R. C. Matthews, D. K. Howell, W. J. Peng, S. G. Train, W. D.
Treleaven, G. G. Stanley, Angew. Chem. Int. Ed. Engl. 1996,
35, 2253–2256; c) W. J. Peng, S. G. Train, D. K. Howell, F. R.
Fronczek, G. G. Stanley, Chem. Commun. 1996, 2607–2608; d)
A. Zanardi, J. A. Mata, E. Peris, J. Am. Chem. Soc. 2009, 131,
14531–14537; e) S. Gonell, M. Poyatos, E. Peris, Angew. Chem.
Int. Ed. 2013, 52, 7009–7013; Angew. Chem. 2013, 125, 7147–
7151 .
[3] a) A. S. K. Hashmi, I. Braun, P. Nosel, J. Schadlich, M. Wie-
teck, M. Rudolph, F. Rominger, Angew. Chem. Int. Ed. 2012,
51, 4456–4460; Angew. Chem. 2012, 124, 4532–4536; b)
A. S. K. Hashmi, M. Wieteck, I. Braun, P. Nosel, L. Jongbloed,
M. Rudolph, F. Rominger, Adv. Synth. Catal. 2012, 354, 555–
562; c) Y. Oonishi, A. Gomez-Suarez, A. R. Martin, S. P. No-
lan, Angew. Chem. Int. Ed. 2013, 52, 9767–9771; d) A. S. K.
Hashmi, I. Braun, M. Rudolph, F. Rominger, Organometallics
2012, 31, 644–661.
[4] a) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180–3211; b) M.
Rudolph, A. S. K. Hashmi, Chem. Soc. Rev. 2012, 41, 2448–
2462; c) A. S. K. Hashmi, M. Rudolph, Chem. Soc. Rev. 2008,
37, 1766–1775; d) A. S. K. Hashmi, M. Wieteck, I. Braun, M.
Rudolph, F. Rominger, Angew. Chem. Int. Ed. 2012, 51, 10633–
10637; Angew. Chem. 2012, 124, 10785–10789; e) A. S. K.
Hashmi, T. Lauterbach, P. Nosel, M. H. Vilhelmsen, M. Ru-
dolph, F. Rominger, Chem. Eur. J. 2013, 19, 1058–1065; f) P.
Nosel, T. Lauterbach, M. Rudolph, F. Rominger, A. S. K.
Hashmi, Chem. Eur. J. 2013, 19, 8634–8641.
a) M. Kojima, K. Mikami, Synlett 2012, 57–61; b) R. L. La-
Londe, B. D. Sherry, E. J. Kang, F. D. Toste, J. Am. Chem. Soc.
2007, 129, 2452–2453; c) O. Kanno, W. Kuriyama, Z. J. Wang,
F. D. Toste, Angew. Chem. Int. Ed. 2011, 50, 9919–9922; Angew.
Chem. 2011, 123, 10093–10096; d) L. I. Rodriguez, T. Roth,
J. L. Fillol, H. Wadepohl, L. H. Gade, Chem. Eur. J. 2012, 18,
3721–3728; e) M. Rodriguez-Zubiri, C. Baudequin, A. Bethe-
gnies, J.-J. Brunet, ChemPlusChem 2012, 77, 445–454; f) C.
Sarcher, A. Luhl, F. C. Falk, S. Lebedkin, M. Kuhn, C. Wang,
J. Paradies, M. M. Kappes, W. Klopper, P. W. Roesky, Eur. J.
Inorg. Chem. 2012, 5033–5042.
E. Tkatchouk, N. P. Mankad, D. Benitez, W. A. Goddard,
F. D. Toste, J. Am. Chem. Soc. 2011, 133, 14293–14300.
V. Pawlowski, H. Kunkely, A. Vogler, Inorg. Chim. Acta 2004,
357, 1309–1312.
The hydroamination reaction of 1 with 2 in the presence of 4
activated with Ag[SbF6] (1 equiv.) only led to yields below 10%
of 5; ligand and silver effects have been identified in gold-cata-
lyzed transformations. For Ag effects, see: a) D. Wang, R. Cai,
S. Sharma, J. Jirak, S. K. Thummanapelli, N. G. Akhmedov,
H. Zhang, X. Liu, J. L. Petersen, X. Shi, J. Am. Chem. Soc.
2012, 134, 9012. For ligand effects, see: b) W. Wang, G. B.
Hammond, B. Xu, J. Am. Chem. Soc. 2012, 134, 5697; for a
review, see: D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev.
2008, 108, 3351.
a) J. W. Sun, S. A. Kozmin, Angew. Chem. Int. Ed. 2006, 45,
4991–4993; Angew. Chem. 2006, 118, 5113–5115; b) D. J. Ye,
X. Zhang, Y. Zhou, D. Y. Zhang, L. Zhang, H. S. Wang, H. L.
Jiang, H. Liu, Adv. Synth. Catal. 2009, 351, 2770–2778; c) V. R.
Bhonde, R. E. Looper, J. Am. Chem. Soc. 2011, 133, 20172–
20174; d) V. H. L. Wong, T. S. A. Hor, K. K. Hii, Chem. Com-
mun. 2013, 49, 9272–9274; e) D. Susanti, F. Koh, J. A. Kusuma,
P. Kothandaraman, P. W. H. Chan, J. Org. Chem. 2012, 77,
7166–7175; f) X. Giner, C. Najera, Synlett 2009, 3211–3213; g)
X. Giner, C. Najera, G. Kovacs, A. Lledos, G. Ujaque, Adv.
Synth. Catal. 2011, 353, 3451–3466; h) C. Michon, F. Medina,
F. Capet, P. Roussel, F. Agbossou-Niedercorn, Adv. Synth. Ca-
tal. 2010, 352, 3293–3305.
[13]
[14]
[15]
[16]
[5] A. Pradal, P. Y. Toullec, V. Michelet, Synthesis 2011, 1501–
1514.
[6] a) M. P. Munoz, J. Adrio, J. C. Carretero, A. M. Echavarren,
Organometallics 2005, 24, 1293–1300; b) M. J. Johansson, D. J.
Gorin, S. T. Staben, F. D. Toste, J. Am. Chem. Soc. 2005, 127,
18002–18003.
Eur. J. Org. Chem. 0000, 0–0
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
7