Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
(d) C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem.
Rev., 2013, 113, 5322; (e) Y. Xi, H. Yi and A. Lei, Org. Biomol.
Chem., 2013, 11, 2387; (f) M. Reckenthäer and A. G.
Griesbeck, Adv. Synth. Catal., 2013, 355, 2727; (g) R. A.
Angnes, Z. Li, C. R. D. Correia and G. B. Hammond, Org.
Biomol. Chem., 2015, 13, 9152.
(a) Y. Yasu, T. Koike and M. Akita, Adv. Synth. Catal., 2012,
354, 3414; (b) K. Miyazawa, Y. Yasu, T. Koike and M. Akita,
Chem. Commun., 2013, 49, 7249.
Chem. Soc., 2013, 135, 10630; (d) W.DLOiuI: a10n.d10L3.9/ACc6kCeCr0m15a3n0nA,
Chem. Commun., 2014, 50, 1878; (e) Y. Yang and S. L.
Buchwald, Angew. Chem., Int. Ed., 2014, 53, 8677; (f) J. Li
and L. Ackermann, Angew. Chem., Int. Ed., 2015, 54, 8551.
19 The oxidation potentials of 1a (1º) and 1r (2º) are +1.41 and
+1.1 V vs. Cp2Fe, respectively (See: Ref. 9a). These indicate
that the reductive quenching ability of 2º alkyl‐BF3K is higher
than 1º alkyl‐BF3K. Carboxylate may not be able to compete
quenching the photoredox catalyst when 2º and 3º alkyl‐
BF3K are used, thus the TFA additive is not necessary.
20 P. Anbarasan, H. Neumann and M. Beller, Angew. Chem., Int.
Ed., 2011, 50, 519.
9
10 (a) H. Huang, G. Zhang, L. Gong, S. Zhang and Y. Chen, J. Am.
Chem. Soc., 2014, 136, 2280; (b) H. Huang, K. Jia and Y. Chen,
Angew. Chem., Int. Ed., 2015, 54, 1881.
11 (a) J. C. Tellis, D. N. Primer and G. A. Molander, Science, 2014,
345, 433; (b) D. N. Primer, I. Karakaya, J. C. Tellis and G. 21 Reviews: (a) M. Beller, J. Seavad, A. Tillack and H. Jiao,
A. Molander, J. Am. Chem. Soc., 2015, 137, 2195; (c) O.
Gutierrez, J. C. Tellis, D. N. Primer, G. A. Molander and M. C.
Kozlowski, J. Am. Chem. Soc., 2015, 137, 4896; (d) I. Karakaya,
D. N. Primer and G. A. Molander, Org. Lett., 2015, 17, 3294;
(e) Y. Yamashita, J. C. Tellisa and G. A. Molander, Proc. Natl.
Acad. Sci. U.S.A., 2015, 112, 12026.
Angew. Chem., Int. Ed., 2004, 43, 3368; (b) K. Muniz, Chem.
Soc. Rev., 2004, 33, 166; (c) K. H. Jensen and M. S. Sigman,
Org. Biomol. Chem., 2008, 6, 4083; (d) T. E. Müller, K. C.
Hultzsch, M. Yus, F. Foubelo and M. Tada, Chem. Rev., 2008,
108, 3795; (e) L. Hintermann, Top. Organomet. Chem., 2010,
31, 123; (f) F. Cardona and A. Goti, Nat. Chem., 2009, 1, 269;
(g) R. I. McDonald, G. Liu and S. S. Stahl, Chem. Rev., 2011,
12 (a) G. A. Molander, J. Org. Chem., 2015, 80, 7837; (b) L. Li, S.
Zhao, A. Joshi‐Pangu, M. Diane and M. R. Biscoe, J. Am. Chem.
Soc., 2014, 136, 14027; (c) S. D. Dreher, P. G. Dormer, D. L.
111, 2981; (h) J. P. Wolfe, Angew. Chem., Int. Ed., 2012, 51
10224.
,
Sandrock and G. A. Molander, J. Am. Chem. Soc., 2008, 130
,
22 Renaud and co‐workers once reported an anit‐Markovnikov
hydrocyanation of alkene via B‐alkylcatecholboranes. (see:
A.‐P. Schaffner, V. Darmency and P. Renaud, Angew. Chem.,
Int. Ed., 2006, 45, 5847.)
9257; (d) S. D. Dreher, S.‐E. Lim, D. L. Sandrock and G. A.
Molander, J. Org. Chem., 2009, 74, 3626, (e) G. A. Molander
and S. R. Wisniewski, J. Am. Chem. Soc., 2012, 134, 16856; (f)
P. S. Thuy‐Boun, G. Villa, D. Dang, P. Richardson, S. Su and J.‐ 23 During the course for the preparation of this manuscript,
Q. Yu, J. Am. Chem. Soc., 2013, 135, 17508; (g) G. A.
Molander and T. Ito, Org. Lett., 2001, , 393; (h) N. Fleury‐
Brégeot, M. Presset, F. Beaumard, V. Colombel, D.
Oehlrich, F. Rombouts and G. A. Molander, J. Org.
Chem., 2012, 77, 10399; (i) S. R. Neufeldt, C. K. Seigerman
and M. S. Sanford, Org. Lett., 2013, 15, 2302.
Peters and Fu reported a related photoinduced radical
cyanation reaction using unactivated alkyl chcloride as the
radical precursor. (see: T. S. Ratani, S. Bachman, G. C. Fu and
J. C. Peters, J. Am. Chem. Soc., 2015, 137, 13902.)
3
13 (a) F. F. Fleming, L. Yao, P. C. Ravikumar, L. Funk and B. C.
Shook, J. Med. Chem., 2010, 53, 7902; (b) Lead Optimization
for Medicinal Chemists: Pharmacokinetic Properties of
Functional Groups and Organic Compounds, (Ed: F. Z.
Dörwald) Wiley‐VCH: Weinheim, Germany, 2012.
14 For selected examples on the synthesis of alkyl nitriles, see:
(a) R. Shang, D.‐S. Ji, L. Chu, Y. Fu, L. Liu, Angew. Chem., Int.
Ed., 2011, 50, 4470; (b) W. Yin, C. Wang and Y. Huang, Org.
Lett., 2013, 15, 1850; (c) J. Kim and S. S. Stahl, ACS Catal.
2013, 3, 1652; (d) T. Shen, T. Wang, C. Qin and N. Jiao,
Angew. Chem., Int. Ed., 2013, 52, 6677; (e) T. Wang and N.
Jiao, Acc. Chem. Res., 2014, 47, 1137; (f) R. V. Jagadeesh, H.
Junge and M. Beller, Nat. Commun., 2014, 5, 4123.
15 For representative examples of radical reactions using TsCN
2b as a cyano source, see: (a) D. H. R. Barton, J. C.
Jaszberenyl and E. A. Theodorakis, Tetrahedron, 1992, 48
,
2613; (b) S. Kim and H.‐J. Song, Synlett, 2002, 2110; (c) S. Kim,
C. H. Cho, S. Kim, Y. Uenoyama and I. Ryu, Synlett, 2005,
3160; (d) B. Gaspar and E. M. Carreira, Angew. Chem., Int.
Ed., 2007, 46, 4519; (e) S. Kamijo, T. Hoshikawa and M. Inoue,
Org. Lett., 2011, 13, 5928; (f) T. Hoshikawa, S. Yoshioka, S.
Kamijo and M. Inoue, Synthesis, 2013, 45, 874.
16 For the use of hypervalent iodine CN reagent 2a in organic
synthesis, see: (a) V. V. Zhdankin, C. J. Kuehl, A. P. Krasutsky,
J. T. Bolz, B. Mismash, J. K. Woodward and A. J. Simonsen,
Tetrahedron Lett., 1995, 36, 7975; (b) R. Frei, T. Courant, M.
D. Wodrich and J. Waser, Chem. E. J., 2015, 21, 2662.
17 (a) M. Galicia and F. J. Gonzalez, J. Electrochem. Soc. 2002,
149, D46; (b) C. Depecker, H. Marzouk, S. Trevin and J.
Devynck, New J. Chem. 1999, 23, 739.
18 For recent examples of cyanation reactions using NCTS, see:
(a) P. Anbarasan, H. Neumann and M. Beller, Angew. Chem.,
Int. Ed., 2011, 50, 519; (b) P. Anbarasan, H. Neumann and M.
Beller, Chem. Eur. J., 2011, 17, 4271; (c) T.‐J. Gong, B. Xiao,
4 | J. Name., 2012, 00, 1‐3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins