2120
Y. Niu et al.
LETTER
(13) (a) Mairanovsky, V. G. Angew. Chem., Int. Ed. Engl. 1976,
15, 281. (b) Agnihotri, G.; Misra, A. K. Tetrahetron Lett.
2006, 47, 3653.
(14) (a) Breton, G. W. J. Org. Chem. 1997, 62, 8952.
(b) Method for Preparation of NaHSO4·SiO2
crude reaction product through a short column of silica gel
using PE–EtOAc as eluent.
Compound 16: colorless solids, mp 108–109 °C. 1H NMR
(500 MHz, CDCl3): d = 8.10–8.08 (m, 2 H), 7.61–7.57 (m, 1
H), 7.49–7.44 (m, 4 H), 7.37–7.33 (m, 3 H), 6.02–5.94 (m, 1
H), 5.53 (s, 1 H), 5.39–5.35 (m, 1 H), 5.26–5.23 (m, 1 H),
4.98 (dd, J = 3.5, 10.5 Hz, 1 H), 4.52–4.46 (m, 3 H), 4.38–
4.35 (dd, J = 2.0, 12.5 Hz, 1 H), 4.22–4.17 (m, 1 H), 4.13–
4.08 (m, 2 H), 3.55 (d, J = 1.0 Hz, 1 H). 13C NMR (125 MHz,
CDCl3): d = 166.0, 137.5, 133.50, 133.45, 130.0, 129.3,
128.9, 128.5, 128.1, 126.1, 117.9, 101.0, 100.7, 72.8, 72.7,
70.3, 68.9, 66.4, 60.6. LRMS–FAB: m/z calcd for
To a solution of 4.14 g (0.03 mol) of NaHSO4·H2O in 20 mL
of H2O in a 100 mL round-bottomed flask was added 10.0 g
of SiO2 (column chromatographic grade, 60 Å, 200–300
mesh). Then, H2O was removed under reduced pressure, and
a free-flowing white solid was obtained. This reagent was
further dried by placing the beaker in an oven maintained at
105 °C for at least 10 h prior to use.
+
(15) (a) Mahender, G.; Ramu, R.; Ramesh, C.; Das, B. Chem.
Lett. 2003, 32, 734. (b) Ramesh, C.; Ravindranath, N.; Das,
B. J. Org. Chem. 2003, 68, 7101. (c) Ramesh, C.;
Mahender, G.; Ravindranath, N.; Das, B. Tetrahedron Lett.
2003, 44, 1465. (d) Ravindranath, N.; Ramesh, C.; Reddy,
M.; Das, B. Adv. Synth. Catal. 2003, 345, 1207. (e) Das, B.;
Mahender, G.; Kumar, V. S.; Chowdhury, N. Tetrahedron
Lett. 2004, 45, 6709. (f) Das, B.; Reddy, K. R.; Thirupathi,
P. Tetrahedron Lett. 2006, 47, 5855.
C23H27N4O6 [M + NH4 ]: 455; found: 455. Anal. Calcd for
C23H23N3O6: 63.15; H, 5.30; N, 9.61, Found: C, 62.80; H,
5.47; N, 9.57.
(19) Rehnberg, N.; Magnusson, G. J. Org. Chem. 1990, 55, 5467.
(20) Cumpstey, I.; Chayajarus, K.; Fairbanks, A. J.; Redgrave, A.
J.; Seward, C. M. P. Tetrahedron: Asymmetry 2004, 15,
3207.
(21) General Procedure for the Cleavage of Benzylidene
Acetals
(16) Ramu, R.; Nath, N.; Reddy, M.; Das, B. Synth. Commun.
2004, 34, 3135.
To a stirred solution of the 4,6-O-benzylidene-glycopyrano-
side (100 mg) in a mixed solvent of CH2Cl2 and MeOH (or
i-PrOH; v/v 4:1, 10 mL) was added activated NaHSO4·SiO2
(200 mg, dried at 105 °C for 10 h prior to use) at r.t. After
completion of the reaction (monitored by TLC), the mixture
was filtered through a Celite bed and the filtrate was con-
centrated. The residue was purified by column chromatog-
raphy on silica gel using PE–EtOAc as eluent to afford the
pure product. If the acid-sensitive functional groups exist, it
is necessary to quench the reaction with Et3N (0.2 mL) after
completion of the reaction.
(17) (a) Zolfigol, M. A.; Madrakian, E.; Ghaemi, E. Indian J.
Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2001, 40,
1191. (b) Zolfigol, M. A.; Madrakian, E.; Ghaemi, E.
Molecules 2001, 6, 614. (c) Zolfigol, M. A.; Madrakian, E.;
Ghaemi, E.; Kiani, M. Synth. Commun. 2000, 11, 2057.
(d) Shirini, F.; Zolfigol, M. A.; Torabi, S. Lett. Org. Chem.
2005, 2, 544. (e) Damavandi, J. A.; Zolfigol, M. A.; Karimi,
B. Synth. Commun. 2001, 31, 3183. (f) Zolfigol, M. A.;
Sadeghi, M. M.; Mohammadpoor-Baltork, I.; Ghorbani
Choghamarani, A.; Taqian-nasab, A. Asian J. Chem. 2001,
13, 887. (g) Das, B.; Venkateswarlu, K.; Mahender, G.;
Mahender, L. Tetrahedron Lett. 2005, 46, 3041. (h) Das,
B.; Banerjee, J.; Ravindranath, N. Tetrahedron 2004, 60,
8357. (i) Ramesh, C.; Banerjee, J.; Pal, R.; Das, B. Adv.
Synth. Catal. 2003, 345, 557. (j) Das, B.; Banerjee, J. Chem.
Lett. 2004, 33, 960. (k) Zhuang, W.; Jørgensen, K. A. Chem.
Commun. 2002, 1336.
Compound 19: white solids, mp 135–136 °C. 1H NMR (300
MHz, CDCl3): d = 7.45 (d, J = 8.1 Hz, 2 H), 7.35 (d, J = 8.7
Hz, 2 H), 7.27–7.24 (m, 2 H), 7.10 (d, J = 8.1 Hz, 2 H), 6.91–
6.85 (m, 4 H), 4.76 (d, J = 10.2 Hz, 1 H), 4.65 (d, J = 12.6
Hz, 3 H), 4.56 (d, J = 12.9 Hz, 1 H), 3.99–3.93 (m, 2 H), 3.81
(s, 3 H), 3.80 (s, 3 H), 3.79–3.72 (m, 1 H), 3.67 (t, J = 9.3 Hz,
1 H), 3.54 (dd, J = 3.3, 9.3 Hz, 1 H), 3.46–3.44 (m, 1 H), 2.58
(br s, 1 H), 2.32 (s, 3 H), 2.01 (br s, 1 H). 13C NMR (75 MHz,
CDCl3): d = 137.8, 132.6, 130.3, 129.9, 129.7, 129.6, 113.9,
113.8, 87.8, 82.1, 77.9, 75.4, 72.0, 69.4, 67.4, 62.8, 55.3.
21.1. ESI-HRMS: m/z calcd for C29H35O7S [M + H+]:
527.2098; found: 527.2104.
(18) General Procedure for the Formation of Benzylidene
Acetals
To a stirred solution of the glycoside substrate (100 mg) and
benzaldehyde dimethyl acetal (1.5 mmol) in MeCN (10 mL)
was added activated NaHSO4·SiO2 (200 mg, dried at 105 °C
for 10 h prior to use) at r.t. After completion of the reaction
(monitored by TLC), the reaction mixture was quenched
with Et3N (0.2 mL). The catalyst was filtered off through a
plug of Celite, and the filtrate was removed under reduced
pressure to yield the product. Although the product was pure
enough, analytical samples were prepared by passing the
(22) Fan, Q.-H.; Ni, N.-T.; Li, Q.; Zhang, L.-H.; Ye, X.-S. Org.
Lett. 2006, 8, 1007.
(23) Marco-Contelles, J.; Molina, M. T.; Anjum, S. Chem. Rev.
2004, 104, 2857.
(24) Larock, R. C. Comprehensive Organic Transformations, 2rd
ed.; John Wiley and Sons: New York, 1999, 1019.
Synlett 2007, No. 13, 2116–2120 © Thieme Stuttgart · New York