C. Policar et al.
FULL PAPER
[22] J. Stein, J. P. Fackler, G. J. Mcclune, J. A. Fee, L. T. Chan, In-
org. Chem. 1979, 18, 3511–3518.
tances; B. additional crystallographic data for 1; C. EPR quantifi-
cation of the superoxide content.
[23] I. Batinic-Haberle, I. Spasojevic, P. Hambright, L. Benov, A. L.
Crumbliss, I. Fridovich, Inorg. Chem. 1999, 38, 4011–4022.
[24] J.-L. Pierre, Regard sur la Biochimie 2000, 17–20.
[25] E. A. Lewis, J. R. Lindsay-Smith, P. H. Walton, S. J. Archibald,
S. P. Foxo, G. M. P. Giblin, J. Chem. Soc., Dalton Trans. 2001,
1159_1161.
[26] M. G. B. Drew, C. J. Harding, V. Mckee, G. G. Morgan, J. Nel-
son, J. Chem. Soc. Chem. Commun. 1995, 1035–1038.
[27] F. C. Frederick, W. M. Coleman, L. T. Taylor, Inorg. Chem.
1983, 22, 792–795.
[28] A. Deroche, I. Morgenstern-Badarau, M. Cesario, J. Guilhem,
B. Keita, L. Nadjo, C. Houée-Levin, J. Am. Chem. Soc. 1996,
118, 4567–4573.
[29] Y. Nishida, N. Tanaka, A. Yamazaki, T. Tokii, N. Hashimoto,
K. Ide, K. Iwasawa, Inorg. Chem. 1995, 34, 3616–3620.
[30] K. Yamato, I. Miyahara, A. Ichimura, K. Hirotsu, Y. Kojima,
H. Sakurai, D. Shiomi, K. Sato, T. Takui, Chem. Lett. 1999,
295–296.
Acknowledgments
We would like to acknowledge the European Community for finan-
cial support (TMR contract FMRX-CT980174).
[1] C. Policar, S. Durot, F. Lambert, M. Cesario, F. Ramiandrasoa,
I. Morgenstern-Badarau, Eur. J. Inorg. Chem. 2001, 1807–1818.
[2] Abbreviations: IPG = N-[(1-methyl-2-imidazolyl)methyl]-N-(2-
pyridylmethyl)glycinate; BIG
azolyl)methyl]glycinate; TMIMA
azolyl)methyl]amine; BMPG = N,N-bis[(6-methyl-2-pyridyl)-
methyl]glycinate; PI 2-{[(1-methyl-2-imidazolyl)methyl]-
amino}phenolate; EPR = electron paramagnetic resonance;
IC50 = concentration that induces a diminution of 50% in the
kinetic of reduction of ferricytochrome c in the McCord–Fri-
dovich assay; SOD = superoxide dismutase; SCE: saturated
calomel electrode; cyt c = Cytochrome c FeIII; NBT: nitro-blue
tetrazolium; X/XO = xanthine/xanthine oxidase. See also
Table 5.
=
N,N-bis[(1-methyl-2-imid-
=
tris[(1-methyl-2-imid-
=
[31] J. M. McCord, I. Fridovich, J. Biol. Chem. 1969, 244, 6049–
6055.
[32] K. M. Faulkner, R. D. Stevens, I. Fridovich, Arch. Biochem.
Biophys. 1994, 310, 341–346.
[33] R. H. Weiss, A. G. Flickinger, W. J. Rivers, M. M. Hardy, K. W.
Aston, U. S. Ryan, D. P. Riley, J. Biol. Chem. 1993, 268, 23049–
23054.
[3] I. Fridovich, Arch. Biochem. Biophys. 1986, 247, 1–11.
[4] I. Fridovich, Ann. Rev. Biochem. 1995, 64, 97–112.
[5] I. Fridovich, J. Biol. Chem. 1997, 272, 18515–18517.
[6] C. X. Zhang, S. J. Lippard, Curr. Opin. Chem. Biol. 2003, 7,
481–489.
[7] D. Salvemini, C. Muscoli, D. P. Riley, S. Cuzzocrea, Pulm.
Pharmacol. Ther. 2002, 15, 439–447.
[8] D. P. Riley, Chem. Rev. 1999, 99, 2573–2587.
[9] I. Batinic-Haberle, I. Spasojevic, R. D. Stevens, P. Hambright,
P. Neta, A. Okado-Matsumoto, I. Fridovich, J. Chem. Soc.,
Dalton Trans. 2004, 1696–1702.
[10] J. R. Anacona, M. Azocar, O. Nusetti, C. Rodriguez-Barbarin,
Transition Met. Chem. 2003, 28, 24–28.
[11] J.-L. Pierre, P. Chautemps, S. Refaif, C. Beguin, A. El Marzuki,
G. Serratrice, E. Saint-Aman, P. Rey, J. Am. Chem. Soc. 1995,
117, 1965–1973.
[12] M. A. Bailey, M. J. Ingram, D. P. Naughton, Biochem. Biophys.
Res. Commun. 2004, 317, 1155–1158.
[13] S. Durot, C. Policar, F. Bisceglie, G. Pelosi, T. Mallah, J.-P.
Mahy, Inorg. Chem. 2003, 42, 8072–8080.
[14] K. J. Oberhausen, R. J. O’Brien, J. F. Richardson, R. M. Bu-
chanan, R. Costa, J.-M. Latour, H.-L. Tsai, D. N. Hendrick-
son, Inorg. Chim. Acta 1990, 173, 145.
[15] K. J. Oberhausen, R. J. O’Brien, J. F. Richardson, R. M. Bu-
chanan, R. Costa, J.-M. Latour, H.-L. Tsai, D. N. Hendrick-
son, Inorg. Chem. 1993, 32, 4561–4565.
[16] P. E. Iberson, H. Lund, Acta Chem. Scand. 1966, 20, 2649.
[17] F. H. Allen, Acta Crystallogr., Sect. B 2002, 58, 380–388.
[18] The six hyperfine lines are broadened because of intermo-
lecular interactions.
[34] Y. Sawada, I. Yamazaki, Biochim. Biophys. Acta 1973, 327,
257–265.
[35] M. Baudry, S. Etienne, A. Bruce, M. Palucki, E. Jacobsen, B.
Malfroy, Biochem. Biophys. Res. Commun. 1993, 192, 964–968.
[36] R. F. Pasternack, B. Halliwell, J. Am. Chem. Soc. 1979, 101,
1026–1031.
[37] J. Butler, W. H. Koppenol, E. Margoliash, J. Biol. Chem. 1982,
257, 10747–10750.
[38] Z.-R. Liao, X.-F. Zheng, B.-S. Luo, L.-R. Shen, D.-F. Li, H.-
L. Liu, W. Zhao, Polyhedron 2001, 20, 2813–2821.
[39] M. C. Rodriguez, Thesis, Université Paris-Sud, 1996, p. 249.
[40] M. C. Rodriguez, I. Morgenstern-Badarau, M. Cesario, J. Gu-
ilhem, B. Keita, L. Nadjo, Inorg. Chem. 1996, 35, 7804–7810.
[41] P. J. Gauuan, M. P. Trova, L. Gregor-Boros, S. B. Bocckino,
J. D. Crapo, B. J. Day, Bioorg. Med. Chem. 2002, 10, 3013–
3021.
[42] N. Kitajima, M. Osawa, N. Tamura, Y. Moro-Oka, T. Hirano,
M. Hirobe, T. Nagano, Inorg. Chem. 1993, 32, 1879–1880.
[43] K. S. Yamaguchi, L. Spencer, D. T. Sawyer, FEBS Lett. 1986,
197, 249–252.
[44] E. A. Lewis, H. H. Khodr, R. C. Hider, J. R. Lindsay-Smith,
P. H. Walton, J. Chem. Soc., Dalton Trans. 2004, 187–188.
[45] D. F. Xiang, C. Y. Duan, X. S. Tan, Q. W. Hang, W. X. Tang,
J. Chem. Soc., Dalton Trans. 1998, 1201–1204.
[46] D. F. Xiang, X. S. Tan, Q. W. Hang, W. X. Tang, B.-M. Wu,
T. C. W. Mak, Inorg. Chim. Acta 1998, 277, 21–25.
[47]
D. Salvemini, Z.-Q. Wang, J. L. Zweier, A. Samouilov, H. Mac-
arthur, T. P. Misko, M. G. Currie, S. Cuzzocrea, J. A. Sikorski,
D. P. Riley, Science 1999, 286, 304–305.
[19] In the case of 3, the formation of a di-µ-oxo–MnIIIMnIV spe-
cies was observed after addition 0.5 equiv. of superoxide. The
di-µ-oxo–MnIIIMnIV species has been shown to be further re-
duced to a di-µ-oxo–MnIIIMnIII species (1 equiv. of superox-
ide). In the case of 4, a similar behaviour was recorded upon
addition of superoxide, but with a different stoichiometry. The
MnIIIMnIV–di-µ-oxo complex was obtained after addition of
1.5 equiv. of superoxide and the EPR-silent MnIIIMnIII–di-µ-
oxo species was obtained after addition of 2 equiv. of superox-
ide. A mechanism involving the oxidation of the starting MnII
complex to an MnIIIMnIV–di-µ-oxo and then a reduction to
the MnIIIMnIII–di-µ-oxo species has been proposed.
[20] W. C. J. Barrette, D. T. Sawyer, J. A. Fee, K. Asada, Biochemis-
try 1983, 22, 624–627.
[48]
I. Spasojevic, I. Batinic-Haberle, R. D. Stevens, P. Hambright,
A. N. Thorpe, J. Grodkowski, P. Neta, I. Fridovich, Inorg.
Chem. 2001, 40, 726–739.
[49]
[50]
[51]
[52]
R. Kachadourian, I. Batinic-Haberle, I. Fridovich, Inorg.
Chem. 1999, 38, 391–396.
K. W. Aston, N. Rath, A. Naik, U. Slomczynska, O. F. Schall,
D. P. Riley, Inorg. Chem. 2001, 40, 1779–1789.
H. Ukeda, S. Maeda, T. Ishii, M. Sawamura, Anal. Biochem.
1997, 251, 206–209.
P. H. Walton, Department of Chemistry, University of York,
personal communication.
[53]
[54]
B. H. J. Bielski, Photochem. Photobiol. 1978, 28, 645–649.
B. H. J. Bielski, D. E. Cabelli, R. L. Arudi, A. B. Ross, J. Phys.
Chem. Ref. Data 1985, 14, 1041–1100.
[21] W. H. Koppenol, F. Levine, T. L. Hatmaker, J. Epp, J. D. Rush,
Arch. Biochem. Biophys. 1986, 251, 594–599.
3522
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2005, 3513–3523