COMMUNICATIONS
Catalytic Electrophilic Halogenations and Haloalkoxylations
(OCH3)(X)]+ (5 and 6) complex
formed [(L)FeACHTUNGTRENNUNG(III)ACHUTNGTRENNUGN
Br. J. Pharmacol. 2007, 152, 838–854; c) J. H. Dawson,
M. Sono, Chem. Rev. 1987, 87, 1255–1276; d) F. H. Vail-
lancourt, E. Yeh, D. A. Vosburg, S. Garneau-Tsodiko-
va, C. T. Walsh, Chem. Rev. 2006, 106, 3364–3378; e) R.
Rutter, L. P. Hager, J. Biol. Chem. 1982, 257, 7958–
7961; f) M. Hofrichter, R. Ullrich, Appl. Microbiol.
Biotechnol. 2006, 71, 276–288; g) A. Butler, M. Sandy,
Nature 2009, 460, 848–854; h) J. A. Manthey, L. P.
Hager, Biochemistry 1989, 28, 3052–3057; i) J. A. Man-
they, L. P. Hager, J. Biol. Chem. 1985, 260, 9654–9659;
j) M. P. Roach, Y. P. Chen, S. A. Woodin, D. E. Lincoln,
C. R. Lovell, J. H. Dawson, Biochemistry 1997, 36,
2197–2202.
can produce electrophilic aromatic halogenation reac-
tion of arenes. Aliphatic substrates remain unreactive.
Interestingly, complementary to Natureꢁs selective ali-
phatic halogenation over hydroxylation from the
(L)FeACHTUNGTRENNUNG
(III)(Cl)(OH) intermediate,[14] we observed
>99% selectivity for aromatic halogenation over me-
thoxylation (Scheme 4).[1d] Note that, only in case of
1,3,5-trimethoxybenzene and 2-methoxynaphthalene
as substrate (Table 1), we have detected ~1% arene
methoxylation product along with halogenation.
In summary, we have developed unprecedented
electrophilic halogenations of arenes starting with
non-heme iron halide complexes. A high-spin iron-
[2] a) K. H. van Pee, C. J. Dong, S. Flecks, J. Naismith,
E. P. Patallo, T. Wage, in: Advances in Applied Micro-
biology, Vol 59, Elsevier Academic Press Inc, San
Diego, 2006, pp 127–157; b) J. L. R. Anderson, S. K.
Chapman, Mol. Biosyst. 2006, 2, 350–357; c) D. G. Fuji-
mori, C. T. Walsh, Curr. Opin. Chem. Biol. 2007, 11,
553–560.
[3] a) Z. Q. Cong, S. Yanagisawa, T. Kurahashi, T. Ogura,
S. Nakashima, H. Fujii, J. Am. Chem. Soc. 2012, 134,
20617–20620; b) L. P. Hager, D. R. Morris, F. S. Brown,
H. Eberwein, J. Biol. Chem. 1966, 241, 1769–1777.
[4] T. Kojima, R. A. Leising, S. P. Yan, L. Que Jr, J. Am.
Chem. Soc. 1993, 115, 11328–11335.
ACHTUNGTRENNUNG(III)methoxy-halide complex, which generates iron
hypohalide upon addition of PhIO, was proposed to
be the active halogenating species. Also, haloalkoxy-
lation of olefins by the non-heme iron complex has
been discovered based on mechanistic understanding
of the halogenation reaction described herein. Both
the electrophilic halogenation and haloalkoxylation
reactions can be made catalytic using potassium
halide. Detailed mechanistic investigation of these re-
actions is currently undergoing in our laboratory.
[5] a) P. Comba, S. Wunderlich, Chem. Eur. J. 2010, 16,
7293–7299; b) J. Bautz, P. Comba, C. L. d. Laorden, M.
Menzel, G. Rajaraman, Angew. Chem. 2007, 119, 8213–
8216; Angew. Chem. Int. Ed. 2007, 46, 8067–8070; c) D.
Wang, K. Ray, M. J. Collins, E. R. Farquhar, J. R.
Frisch, L. Gomez, T. A. Jackson, M. Kerscher, A. Wale-
ska, P. Comba, M. Costas, L. Que Jr, Chem. Sci. 2013,
4, 282–291; d) W. N. Oloo, Y. Feng, S. Iyer, S. Parmelee,
G. Xue, L. Que Jr, New J. Chem. 2013, 37, 3411–3415;
e) J.-U. Rohde, A. Stubna, E. L. Bominaar, E. Munck,
W. Nam, L. Que Jr, Inorg. Chem. 2006, 45, 6435–6445.
[6] D. Mandon, A. Machkour, S. Goetz, R. Welter, Inorg.
Chem. 2002, 41, 5364–5372.
Experimental Section
General Procedure for halogenation and
halomethoxylation
In a 20-mL screw-cap reaction tube [Fe(II)
Cl, Br) (1, 2) or [Fe(II)(TPA)(CH3CN)2]
ACHTUNGTRENNUNG
N
G
ACHTUNGTRENNUNG
(0.125 mmol or 0.1 mmol) of the prepared non-heme com-
plexes were charged. Subsequently 0.125 mmol (0.25/
0.5 mmol of substrates for halomethoxylation) starting mate-
rial (1 mmol for catalytic reaction) and MeOH/DCM or
MeOH/MeCN (3:2) were added to the reaction tube. For
halomethoxylation MeOH (5 mL) was used. Then PhIO
(0.3 mmol) was added to the reaction mixture. The whole
reaction was set inside the glove box. The reaction mixture
was stirred for 24 h. After that the reaction tube was re-
moved from the glove box and the reaction mixture was fil-
tered through the celite and washed twice with ethyl acetate.
The filtrate was used for GC-MS, GC analysis and isolation.
[7] Z. Q. Cong, T. Kurahashi, H. Fujii, J. Am. Chem. Soc.
2012, 134, 4469–4472.
[8] a) A. K. Vardhaman, C. V. Sastri, D. Kumar, S. P. de
Visser, Chem. Commun. 2011, 47, 11044–11046;
b) A. K. Vardhaman, P. Barman, S. Kumar, C. V. Sastri,
D. Kumar, S. P. de Visser, Chem. Commun. 2013, 49,
10926–10928.
[9] See the Supporting Information for detailed descrip-
tions.
[10] a) F. S. Mei, C. P. Ou, G. L. Wu, L. Cao, F. Han, X. G.
Meng, J. Li, D. F. Li, Z. R. Liao, Dalton Trans. 2010, 39,
4267–4269; b) C. R. Goldsmith, R. T. Jonas, T. D. P.
Stack, J. Am. Chem. Soc. 2002, 124, 83–96.
Acknowledgements
[11] J. V. Walker, M. Morey, H. Carlsson, A. Davidson,
G. D. Stucky, A. Butler, J. Am. Chem. Soc. 1997, 119,
6921–6922.
[12] a) T. J. Hubin, J. M. McCormick, N. W. Alcock, D. H.
Busch, Inorg. Chem. 2001, 40, 435–444; b) F. Namuswe,
T. Hayashi, Y. B. Jiang, G. D. Kasper, A. A. N. Sarjeant,
P. Moenne-Loccoz, D. P. Goldberg, J. Am. Chem. Soc.
2010, 132, 157–167; c) Y. Zang, J. Kim, Y. H. Dong,
E. C. Wilkinson, E. H. Appelman, L. Que, J. Am.
Chem. Soc. 1997, 119, 4197–4205; d) N. Y. Oh, M. S.
This activity is supported by DST, India. Financial support
has been received from CSIR, India (fellowships to S.R. and
S.B.), UGC, India (fellowship to T.P.).
References
[1] a) S. J. Klebanoff, J. Leukoc. Biol. 2005, 77, 598–625;
b) E. Malle, P. G. Furtmuller, W. Sattler, C. Obinger,
Adv. Synth. Catal. 2014, 356, 2453 – 2458
ꢀ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2457