Full Paper
[10] M. Elbing, R. Ochs, M. Koentopp, M. Fischer, C. von Hänisch, F. Weigend,
F. Evers, H. B. Weber, M. Mayor, Proc. Natl. Acad. Sci. USA 2005, 102, 8815–
8820.
[11] Y. Lee, S. Yuan, L. Yu, Sci. China Chem. 2011, 54, 410–414.
[12] P. Jiang, G. M. Morales, W. You, L. Yu, Angew. Chem. 2004, 116, 4571;
Angew. Chem. Int. Ed. 2004, 43, 4471–4475.
TM-2/2003 spectrofluorometer equipped with a pulsed Xe lamp.
The instrument was operated in time-resolved mode with a variable
delay time. The compounds were dissolved in ethanol in a quartz
tube (5 mm of diameter) and cooled to 77 K. The absorbance of
the samples was 0.3 at the excitation wavelength (355 nm).
Fluorescence Measurements: The fluorescence decay traces were
recorded with an EasyLife X system from OBB with a PTI lifetime
detector. The solutions were purged with N2 for at least 10 min. The
experiments were performed at room temperature (λexc = 375 nm).
[13] S. Battacharyya, A. Kibel, G. Kodis, P. A. Liddell, M. Gervaldo, D. Gust, S.
Lindsay, Nano Lett. 2011, 11, 2709–2714.
[14] D. Gerster, J. Reichert, H. Bi, J. V. Barth, S. M. Kaniber, A. W. Holleitner, I.
Visoly-Fisher, S. Sergani, I. Carmeli, Nat. Nanotechnol. 2012, 7, 673–676.
[15] M. Vadai, N. Nachman, M. Ben-Zion, M. Bürkle, F. Pauly, J. C. Cuevas, Y.
Selzer, J. Phys. Chem. Lett. 2013, 4, 2811–2816.
[16] S. M. Parker, M. Smeu, I. Franco, M. A. Ratner, T. Seideman, Nano Lett.
2014, 14, 4587–4591.
[17] H. Löfas, B. O. Jahn, J. Wärna, R. Emanuelsson, R. Ahuja, A. Grigoriev, H.
Ottosson, Faraday Discuss. 2014, 174, 105–124.
[18] L. Y. Hsu, D. Xie, H. Rabitz, J. Chem. Phys. 2014, 141, 124703.
[19] H. Cao, M. Zhang, T. Tao, M. Song, C. Zhang, J. Chem. Phys. 2015, 142,
084705.
[20] J. K. Viljas, F. Pauly, J. C. Cuevas, Phys. Rev. B 2007, 76, 033403.
[21] J. K. Viljas, F. Pauly, J. C. Cuevas, Phys. Rev. B 2008, 77, 155119.
[22] M. Galperin, A. Nitzan, J. Chem. Phys. 2006, 124, 234709.
[23] L. Flamigni, A. Barbieri, C. Sabatini, B. Ventura, F. Barigelletti, Top. Curr.
Chem. 2007, 281, 143–203.
[24] R. C. Evans, P. Douglas, C. J. Winscom, Coord. Chem. Rev. 2006, 250, 2093–
2126.
[25] R. D. Costa, E. Ortí, H. J. Bolink, F. Monti, G. Accorsi, N. Armaroli, Angew.
Chem. 2012, 124, 8300; Angew. Chem. Int. Ed. 2012, 51, 8178–8211.
[26] A. Ruggi, F. W. B. van Leeuwen, A. H. Velders, Coord. Chem. Rev. 2011,
255, 2542–2554.
Computational Details: DFT calculations were performed with the
D.01 revision of the Gaussian 09 program package[56] with the
Becke three-parameter B3LYP exchange-correlation functional[57]
together with the 6-31G** basis set for C, H, N, O, and S[58] and the
“double-ꢁ” quality LANL2DZ basis set for Ir.[59] The geometries of
the singlet ground state (S0) and the lowest-energy triplet state (T1)
were optimized within the C2 symmetry group. The geometry of
the first triplet state was calculated at the spin-unrestricted UB3LYP
level with a spin multiplicity of three. All calculations were per-
formed in the presence of the solvent (dichloromethane). Solvent
effects were considered within the self-consistent reaction field
(SCRF) theory by using the SMD keyword that performs a polarized
continuum model (PCM)[60–62] calculation by using the solvation
model of Truhlar et al.[63] The SMD solvation model is based on the
polarized continuous quantum chemical charge density of the so-
lute (the “D” in the name stands for “density”).
[27] Y. Ohsawa, S. Sprouse, K. A. King, M. K. DeArmond, K. W. Hanck, R. J.
Watts, J. Phys. Chem. 1987, 91, 1047–1054.
[28] C. Dragonetti, L. Falciola, P. Mussini, S. Righetto, D. Roberto, R. Ugo, A.
Valore, F. De Angelis, S. Fantacci, A. Sgamellotti, M. Ramon, M. Muccini,
Inorg. Chem. 2007, 46, 8533–8547.
[29] K. K. W. Lo, C. K. Chung, T. K. M. Lee, L. H. Lui, K. H. K. Tsang, N. Zhu,
Inorg. Chem. 2003, 42, 6886–6897.
[30] F. Neve, M. La Deda, A. Crispini, A. Bellusci, F. Puntoriero, S. Campagna,
Organometallics 2004, 23, 5856–5863.
[31] Q. Zhao, S. Liu, M. Shi, C. Wang, M. Yu, L. Li, F. Li, T. Yi, C. Huang, Inorg.
Chem. 2006, 45, 6152–6160.
[32] X. Zeng, M. Tavasli, I. F. Perepichka, A. S. Batsanov, M. R. Bryce, C. J.
Chiang, C. Rothe, A. P. Monkman, Chem. Eur. J. 2008, 14, 933–943.
[33] R. V. Kiran, C. F. Hogan, B. D. James, D. J. D. Wilson, Eur. J. Inorg. Chem.
2011, 4816–4825.
[34] R. Huber, M. T. González, S. Wu, M. Langer, S. Grunder, V. Horhoiu, M.
Mayor, M. R. Bryce, C. Wang, R. Jitchati, C. Schönenberger, M. Calame, J.
Am. Chem. Soc. 2008, 130, 1080–1084.
Acknowledgments
The authors would like to especially acknowledge Prof. Hans U.
Güdel for his valuable inspiration and friendship. The present
work has been funded by the European Union (EU), (ERC Ad-
vanced Grant SPINMOL), the Spanish Ministerio de Economía y
Competitividad (MINECO) (projects MAT2014-56243, CTQ2015-
71154, and Unidad de Excelencia María de Maeztu MDM-2015-
0552), and the Generalitat Valenciana (Prometeo/2012/053,
PrometeoII/2013/006 and ISIC-Nano). J. P., I. V. and S. T. thank
the Ministerio de Ciencia e Innovación (MICINN) for their pre-
doctoral fellowships and JdlC contracts. J. A., I. V., and S. T. also
thank the European Union (EU) for their FP7-PEOPLE-2012-IEF-
329513, PCIG12GA-2012-334257 and MSCA-IF-657465, and FP7-
PEOPLE-2012-CIG-321739 grants, respectively.
[35] W. Hong, D. Z. Manrique, P. Moreno-García, M. Gulcur, A. Mishchenko,
C. J. Lambert, M. R. Bryce, T. Wandlowski, J. Am. Chem. Soc. 2012, 134,
2292–2304.
[36] J. Ponce, C. R. Arroyo, S. Tatay, R. Frisenda, P. Gaviña, D. Aravena, E. Ruiz,
H. S. J. Van Der Zant, E. Coronado, J. Am. Chem. Soc. 2014, 136, 8314–
8322.
Keywords: Iridium · N ligands · Photophysical properties ·
Density functional calculations · Anchoring groups · Molecular
junctions
[37] K. D. Glusac, S. Jiang, K. S. Schanze, Chem. Commun. 2002, 8, 2504–2505.
[38] K. Y. Kim, R. T. Farley, K. S. Schanze, J. Phys. Chem. B 2006, 110, 17302–
17304.
[39] M. J. E. Resendiz, J. C. Noveron, H. Disteldorf, S. Fischer, P. J. Stang, Org.
Lett. 2004, 6, 651–653.
[40] J. W. Ciszek, J. M. Tour, Tetrahedron Lett. 2004, 45, 2801–2803.
[41] Y. Saitoh, T. Koizumi, K. Osakada, T. Yamamoto, Can. J. Chem. 1997, 75,
1336–1339.
[42] S. Huang, J. M. Tour, J. Org. Chem. 1999, 64, 8898–8906.
[43] R. Ziessel, J. Suffert, M. Youinou, J. Org. Chem. 1996, 61, 6535–6546.
[44] D. T. Gryko, C. Clausen, K. M. Roth, N. Dontha, D. F. Bocian, W. G. Kuhr,
J. S. Lindsey, J. Org. Chem. 2000, 65, 7345–7355.
[1] T. Shamai, Y. Selzer, Chem. Soc. Rev. 2011, 40, 2293–2305.
[2] M. Galperin, A. Nitzan, Phys. Chem. Chem. Phys. 2012, 14, 9421–9438.
[3] S. V. Aradhya, L. Venkataraman, Nat. Nanotechnol. 2013, 8, 399–410.
[4] S. Rigaut, Dalton Trans. 2013, 42, 15859–15863.
[5] D. Dulić, S. J. van Der Molen, T. Kudernac, H. T. Jonkman, J. J. D. De Jong,
T. N. Bowden, J. van Esch, B. L. Feringa, B. J. van Wees, Phys. Rev. Lett.
2003, 91, 207402.
[6] A. C. Whalley, M. L. Steigerwald, X. Guo, C. Nuckolls, J. Am. Chem. Soc.
2007, 129, 12590–12591.
[7] E. S. Tam, J. J. Parks, W. W. Shum, Y. W. Zhong, M. B. Santiago-Berríos, X.
Zheng, W. Yang, G. K. L. Chan, H. D. Abruña, D. C. Ralph, ACS Nano 2011,
5, 5115–5123.
[45] S. Sprouse, K. A. King, P. J. Spellane, R. J. Watts, J. Am. Chem. Soc. 1984,
106, 6647–6653.
[8] S. Lara-Avila, A. V. Danilov, S. E. Kubatkin, S. L. Broman, C. R. Parker, M. B.
Nielsen, J. Phys. Chem. C 2011, 115, 18372–18377.
[9] Y. Kim, T. J. Hellmuth, D. Sysoiev, F. Pauly, T. Pietsch, J. Wolf, A. Erbe, T.
Huhn, U. Groth, U. E. Steiner, E. Scheer, Nano Lett. 2012, 12, 3736–3742.
[46] M. Lepeltier, T. K. M. Lee, K. K. W. Lo, L. Toupet, H. Le Bozec, V. Guerchais,
Eur. J. Inorg. Chem. 2005, 110–117.
Eur. J. Inorg. Chem. 2016, 1851–1859
1858
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim