FULL PAPERS
Artem A. Kulago et al.
fluorobenzoic acid (9.1 mg, 0.05 mmol, 7 mol%) in 2,4-dime- References
thylpentan-3-ol (3440 mg, 29.6 mmol),
2
(1690 mg,
14.8 mmol) and Ru3(CO)12 (37.8 mg, 0.06 mmol, 8 mol%).
The crude products were purified by automated flash chro-
matography applying a heptane-ethyl acetate gradient (from
100% heptane to 50% heptane–50% ethyl acetate in
120 min, 40 mLminÀ1).
[1] a) Fundamentals of Heterocyclic Chemistry: Importance
in Nature and in the Synthesis of Pharmaceuticals,
(Eds.: L. D. Quin, J. Tyrell), Wiley, New Jersey, 2010;
b) Pharmaceutical Substances: Syntheses, Patents, Appli-
cations, 5th edn., (Eds.: A. Kleemann, J. Engel, B.
Kutscher, D. Reichert), Georg Thieme Verlag, Stutt-
gart, 2009.
[2] For recent reviews, see a) K. R. Campos, Chem. Soc.
Rev. 2007, 36, 1069–1084; b) E. A. Mitchell, A. Pe-
schiulli, N. Lefꢄvre, L. Meerpoel, B. U. W. Maes, Chem.
Eur. J. 2012, 18, 10092–10142.
[3] For cyclic amines, see a) Y. Ishii, N. Chatani, F. Kakiu-
chi, S. Murai, Tetrahedron Lett. 1997, 38, 7565–7568;
b) Y. Ishii, N. Chatani, F. Kakiuchi, S. Murai, Organo-
metallics 1997, 16, 3615–3622; c) N. Chatani, T. Asaumi,
T. Ikeda, S. Yorimitsu, Y. Ishii, F. Kakiuchi, S. Murai, J.
Am. Chem. Soc. 2000, 122, 12882–12883; d) N. Chatani,
T. Asaumi, S. Yorimitsu, T. Ikeda, F. Kakiuchi, S.
Murai, J. Am. Chem. Soc. 2001, 123, 10935–10941;
e) C. S. Yi, S. Y. Yun, Organometallics 2004, 23, 5392–
5395; f) S. J. Pastine, D. V. Gribkov, D. Sames, J. Am.
Chem. Soc. 2006, 128, 14220–14221; g) H. Prokopcovꢅ,
S. D. Bergman, K. Aelvoet, V. Smout, W. Herrebout, B.
Van der Veken, L. Meerpoel, B. U. W. Maes, Chem.
Eur. J. 2010, 16, 13063–13067; h) S. D. Bergman, T. E.
Storr, H. Prokopcovꢅ, K. Aelvoet, G. Diels, L. Meer-
poel, B. U. W. Maes, Chem. Eur. J. 2012, 18, 10393–
10398; i) A. Peschiulli, V. Smout, T. Storr, E. A. Mitch-
2-{2-[2-(2-Methyl-1,3-dioxolan-2-yl)ethyl]piperidin-1-yl}-
pyridine (4a): yield: 320 mg (1.16 mmol, 39%); colorless vis-
cous oil. 1H NMR (CDCl3): d=8.10 (ddd, J=4.9, 2.0,
0.8 Hz, 1H), 7.38 (ddd, J=8.9, 7.1, 2.0 Hz, 1H), 6.56 (d, J=
8.7 Hz, 1H), 6.45 (dd, J=5.0, 7.0 Hz, 1H), 4.44–4.42 (m,
1H), 4.22–4.11 (m, 1H), 3.93–3.85 (m, 4H), 2.95 (td, J=
13.2, 2.8 Hz, 1H), 1.86–1.46 (m, 10H), 1.29 (s, 3H);
13C NMR (CDCl3): d=159.0, 147.7, 137.4, 111.5, 110.0,
106.7, 64.6, (2C) 51.4, 39.3, 36.0, 27.8, 25.3, 23.8, 23.0, 19.2;
+
HR-MS (ESI): m/z=277.1909, calculated for C16H25N2O2
[M+H]+: 277.1916.
trans-2-{2,6-Bis[2-(2-methyl-1,3-dioxolan-2-yl)ethyl]piperi-
din-1-yl}pyridine (trans-5a): yield: 340 mg (0.87 mmol,
1
29%); colorless viscous oil. H NMR (CDCl3): d=8.15 (dd,
J=1.3, 5.0 Hz, 1H), 7.40 (ddd, J=8.9, 7.1, 2.0 Hz, 1H), 6.52
(dd, J=6.5, 5.0 Hz, 1H), 6.47 (d, J=8.6 Hz, 1H), 3.97–3.80
(m, 10H), 1.90–1.54 (m, 14H), 1.29 (s, 6H); 13C NMR
(CDCl3): d=158.7, 147.6, 136.6, 111.9, 110.0, 108.9, 64.5
(4C), 52.7, 36.2, 26.8, 24.5, 23.7, 15.0; HR-MS (ESI): m/z=
+
391.2602, calculated for C22H35N2O4 [M+H]+: 391.2597.
cis-2-{2,6-Bis[2-(2-methyl-1,3-dioxolan-2-yl)ethyl]piperi-
din-1-yl}pyridine (cis-5a): yield: 65 mg (0.17 mmol, 6%);
1
white solid; mp 125–1278C. H NMR (CDCl3): d=8.10 (d,
J=3.6 Hz, 1H), 7.37 (t, J=7.6 Hz, 1H), 6.44 (d, J=7.8 Hz,
2H), 4.31 (m, 2H), 3.90–3.87 (m, 8H), 1.79–1.46 (m, 14H),
1.28 (s, 6H); 13C NMR (CDCl3): d=158.4, 147.8, 137.2,
111.2, 110.0, 106.2, 64.5 (4C), 50.0, 37.0, 27.5, 23.8, 14.8;
ˇ
ell, Z. Eliꢅs, W. Herrebout, D. Berthelot, L. Meerpoel,
B. U. W. Maes, Chem. Eur. J. 2013, 19, 10378–10387;
j) M. C. Schwarz, N. Dastbaravardeh, K. Kirchner, M.
Schnꢆrch, M. D. Mihovilovic, Monatsh. Chem. 2013,
144, 539–552.
+
HR-MS (ESI): m/z=391.2602, calculated for C22H35N2O4
[M+H]+: 391.2597.
[4] For acyclic amines, see a) C.-H. Jen, D. C. Hwang, S.-J.
Na, Chem. Commun. 1998, 1405–1406; b) S. Pan, K.
Endo, T. Shibata, Org. Lett. 2011, 13, 4692–4695; c) S.
Pan, T. Matsuo, K. Endo, T. Shibata, Tetrahedron 2012,
68, 9009–9015; d) N. Dastbaravardeh, M. Schnꢆrch,
M. D. Mihovilovic, Org. Lett. 2012, 14, 1930–1933; e) N.
Dastbaravardeh, K. Kirchner, M. Schnꢆrch, M. D. Mi-
hovilovic, J. Org. Chem. 2013, 78, 658–672; f) N. Dast-
baravardeh, M. Schnꢆrch, M. D. Mihovilovic, Org. Lett.
2012, 14, 3792–3795; g) N. Y. Phani Kumar, R. Jeya-
chandran, L. Ackermann, J. Org. Chem. 2013, 78,
4145–4152.
[5] For Buchwald–Hartwig reactions involving halopyri-
dines, see, for example: a) T. H. M. Jonckers, B. U. W.
Maes, G. L. F. Lemiꢄre, R. Dommisse, Tetrahedron
2001, 57, 7027–7034; b) B. U. W. Maes, K. T. J. Loones,
T. H. M. Jonckers, G. L. F. Lemiꢄre, R. A. Dommisse,
A. Haemers, Synlett 2002, 1995–1998; c) B. U. W. Maes,
K. T. J. Loones, G. L. F. Lemiꢄre, R. A. Dommisse, Syn-
lett 2003, 1822–1824. For a review, see d) D. Maiti, B. P.
Fors, J. L. Henderson, Y. Nakamura, S. L. Buchwald,
Chem. Sci. 2011, 2, 57–68.
Acknowledgements
This work was financially supported by the University of
Antwerp (IOF, BOF), the Marie Curie action Grant PIIF-
GA-2012-331366, Janssen Research & Development and the
Hercules Foundation (AUHA 09/014, AUHA 09/008,
AUHA-002, AUHA-008). The authors thank Philippe Frank
for technical assistance, Heidi Seykens and Veerle Smout for
NMR assistance, and Norbert Hancke for HR-MS measure-
ments. The authors are grateful to Matthias Zeller (Youngs-
town State University, Ohio, USA) for the collection of the
X-ray data sets of trans-4c, cis-4e and cis-14. The X-ray dif-
fractometer was funded by NSF Grant 0087210, Ohio Board
of Regents Grant CAP-491, and by Youngstown State Uni-
versity. The authors also thank Kristof Van Hecke (Ghent
University, Belgium) for the collection of the X-ray data of
trans-5g and the Hercules Foundation (AUGE 11/029) for
funding the diffractometer and Christophe Vande Velde (Uni-
versity of Antwerp, Belgium) for the refinement of the struc-
tures.
[6] V. Smout, A. Peschiulli, S. Verbeeck, E. A. Mitchell, W.
Herrebout, P. Bultnick, C. M. L. Vande Velde, D. Ber-
thelot, L. Meerpoel, B. U. W. Maes, J. Org. Chem. 2013,
78, 9803–9814.
8
ꢀ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 0000, 000, 0 – 0
ÝÝ
These are not the final page numbers!