1122
I. Yavari et al.
LETTER
(3) Liu, G.; Huth, J. R.; Olejniczak, E. T.; Mendoza, F.;
DeVries, P.; Leitza, S.; Reilly, E. B.; Okasinski, G. F.; Fesik,
S. W.; Von Geldern, T. W. J. Med. Chem. 2001, 44, 1202.
(4) Nielsen, S. F.; Nielsen, E. Ø.; Olsen, G. M.; Liljefors, T.;
Peters, D. J. Med. Chem. 2000, 43, 2217.
Table 2 Copper-Catalyzed C–S Coupling of Aryl Iodides with Ele-
mental Sulfur
Entry ArX
Product
Yield
(%)
(5) Murata, M.; Buchwald, S. L. Tetrahedron 2004, 60, 7397.
(6) Fernandez, M. A.; Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc.
2006, 128, 2180.
(7) Zhang, Y.; Ngeow, K. N.; Ying, J. Y. Org. Lett. 2007, 9,
3495.
(8) Correa, A.; Carril, M.; Bolm, C. Angew. Chem. Int. Ed.
2008, 47, 2880.
(9) Buchwald, S. L.; Bolm, C. Angew. Chem. Int. Ed. 2009, 48,
5586.
S
I
1
87
84
1a
2a
2b
S
I
2
(10) Sperotto, E.; van Klink, G. P. M.; de Vries, J. G.; van Koten,
G. J. Org. Chem. 2008, 73, 5625.
1b
(11) Xu, H.; Zhao, X.; Fu, Y.; Feng, Y. Synlett 2008, 3063.
(12) Xu, R.; Wan, J.; Mao, H.; Pan, Y. J. Am. Chem. Soc. 2010,
132, 15531.
S
I
3
71
(13) Prasad, D.; Sekar, G. Synlett 2010, 79.
(14) Firouzabadi, H.; Iranpoor, N.; Gholinejad, M. Adv. Synth.
Catal. 2010, 352, 119.
(15) Wang, H.; Jiang, L.; Chen, T.; Li, Y. Eur. J. Org. Chem.
2010, 2324.
(16) Ramana, T.; Saha, P.; Das, M.; Punniyamurthy, T. Org. Lett.
2010, 12, 84.
(17) Ke, F.; Qu, Y.; Jiang, Z.; Li, Z.; Wu, D.; Zhou, X. Org. Lett.
2011, 13, 454.
1c
2c
S
I
4
68
91
72
MeO
OMe
NO2
MeO
1d
2d
I
S
(18) Yavari, I.; Ghazanfarpour-Darjani, M.; Ahmadian, S.; Solgi,
Y. Synlett 2011, 1745.
5
O2N
O2N
(19) General Procedure for the Synthesis of Products 2
A mixture of aryl iodide (2 mmol), CuI (0.10 mmol), ligand
(1.1 mmol), and S8 (1.1 mmol) were added to an oven-dried
reaction tube equipped with a septum. The reaction tube was
evacuated and back-filled with argon. Under a counterflow
of argon, EIPA (0.258 g, 2 mmol) and DMSO (2 mL) were
added, and the mixture stirred at r.t. for 8 h. After complete
disappearance of aryl iodide (monitored by TLC), H2O (5
mL) was added, and the mixture was extracted with CH2Cl2
(3 × 5 mL). The combined organic phases were dried (on
MgSO4) and filtered before evaporation of the solvent. The
residue was purified on silica gel, eluting with PE–EtOAc
(20:1), to give product 2. Analytical and spectroscopic data
for all derivatives, except 2g–i have been reported
previously.19
1e
2e
S
I
6
Br
Br
Br
1f
2f
CF3
CF3
CF3
S
I
7
71
1g
2g
F3C
S
CF3
F3C
I
8
9
81
80
Bis(2-trifluoromethylphenyl)sulfane (2g)
Colorless oil; yield: 0.23 g (71%). IR (KBr): νmax = 2915,
1591, 1443, 1313, 1264, 1170, 1128, 1034, 756 cm–1. 1H
NMR (500 MHz, CDCl3): δ = 7.24 (2 H, d, 3J = 8.0 Hz, 2
CH), 7.36–7.44 (4 H, m, 4 CH), 7.74 (2 H, d, 3J = 7.5 Hz, 2
CH). 13C NMR (125.7 MHz, CDCl3): δ = 123.6 (2 CF3, q,
1JCF = 272.0 Hz), 126.9 (2 CH, q, 3JCF = 5.5 Hz), 127.5 (2
CH), 131.0 (2 C, q, 2JCF = 30.2 Hz), 132.4 (2 CH), 134.7 (2
CH), 134.8 (2 C, q, 3JCF = 5.0 Hz). MS (EI, 70 eV): m/z (%)
= 322 [M + 1], 301 (55), 252 (33), 233 (99), 184 (59), 157
(50), 133 (17), 108 (36).
1h
2h
S
I
NC
CN
NC
1i
2i
from aryl iodides at ambient temperature. This protocol,
allowing the formation of two C–S bonds in a one-pot re-
action, is distinguished by avoiding the use of foul smell-
ing thiophenols and strong inorganic bases.
Bis(3-trifluoromethylphenyl)sulfane (2h)
Colorless oil; yield: 0.26 g (81%). IR (KBr): νmax = 2928,
1589, 1422, 1316, 1145, 755 cm–1. 1H NMR (500 MHz,
CDCl3) δ = 7.46 (2 H, d, 3J = 7.2 Hz, 2 CH), 7.49–7.55 (4 H,
m, 4 CH), 7.62 (2 H, s, 2 CH). 13C NMR (125.7 MHz,
CDCl3): δ = 123.6 (2 CF3, q, 1JCF = 271 Hz), 124.4 (2 CH, q,
3JCF = 3.5 Hz), 127.7 (2 CH, q, 3JCF = 3.7 Hz), 129.9 (2 CH),
131.9 (2 C, q, 2JCF = 32.4 Hz), 134.2 (2 CH), 136.2 (2 C). MS
(EI, 70 eV): m/z (%) = 322 [M + 1], 301 (26), 233 (69), 184
(35), 157 (40), 133 (11), 108 (25).
References and Notes
(1) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108,
3054.
(2) Monnier, F.; Taillefer, M. Angew. Chem. Int. Ed. 2009, 48,
2.
Synlett 2014, 25, 1121–1123
© Georg Thieme Verlag Stuttgart · New York