1158
C. Wang et al.
LETTER
ate RhPh (B). The carbonyl moiety from the decarbonyl-
ation process is transferred to B, followed by the insertion
of the Rh–C bond in C to yield RhCOPh (D). The subse-
quent aroylrhodation to an alkyne 1 in a syn manner, fol-
lowed by the protonation of the formed vinylrhodium E,
produces the primary product (E)-3aa, along with the re-
generation of A. (E)-3aa isomerizes to give an equilibri-
um mixture of (E)- and (Z)-3aa under the rhodium-
catalytic conditions in the presence of an acidic arylboron-
ic acid.12,13
Supporting Information for this article is available online at
r
t
iornat
References and Notes
(1) (a) Kollár, L. Modern Carbonylation Methods; Wiley-VCH:
Weinheim, 2008. (b) Beller, M. Catalytic Carbonylation
Reactions; Springer: Berlin, 2006.
(2) For a review, see: Morimoto, T.; Kakiuchi, K. Angew. Chem.
Int. Ed. 2004, 43, 5580.
(3) For recent papers, see: (a) Brancour, C.; Fukuyama, T.;
Mukai, Y.; Skrydstrup, T.; Ryu, I. Org. Lett. 2013, 15, 2794.
(b) Ueda, T.; Konishi, H.; Manabe, K. Org. Lett. 2012, 14,
3100. (c) Ju, J.; Jeong, M.; Moon, J.; Jung, H. M.; Lee, S.
Org. Lett. 2007, 9, 4615. (d) Grushin, V. V.; Alper, H.
Organometallics 1993, 12, 3846. (e) Park, J. H.; Cho, Y.;
Chung, Y. K. Angew. Chem. Int. Ed. 2010, 49, 5138.
(f) Bjerglund, K.; Lindhardt, A. T.; Skrydstrup, T. J. Org.
Chem. 2013, 78, 6112. (g) Nordeman, P.; Odell, L. R.;
Larhed, M. J. Org. Chem. 2012, 77, 11393.
(4) For selected papers, see: (a) Ikeda, K.; Morimoto, T.;
Tsumagari, T.; Tanimoto, H.; Nishiyama, Y.; Kakiuchi, K.
Synlett 2012, 23, 393. (b) Fujioka, M.; Morimoto, T.;
Tsumagari, T.; Tanimoto, H.; Nishiyama, Y.; Kakiuchi, K.
J. Org. Chem. 2012, 77, 2911. (c) Makado, G.; Morimoto,
T.; Sugimoto, Y.; Tsutsumi, K.; Kagawa, N.; Kakiuchi, K.
Adv. Synth. Catal. 2010, 352, 299. (d) Morimoto, T.;
Yamasaki, K.; Hirano, A.; Tsutsumi, K.; Kagawa, N.;
Kakiuchi, K.; Harada, Y.; Fukumoto, Y.; Chatani, N.;
Nishioka, T. Org. Lett. 2009, 11, 1777.
O
Rh = BIPHEP-ligated Rh
Rh = BIPHEP-free Rh
H
H
Rh CO
Rh
– H2
ArB(OH)2
H2O
2
Rh Cl
Rh OH
Ar Rh
Ar Rh CO
– HCl
H
– B(OH)3
A
B
C
R
O
Rh
O
R
O
1
Ar
R
Ar
R
H2O
B(OH)n
Ar
Rh
R
R
(E)-3
E
D
(Z)-3
(5) For recent papers, see: (a) Lee, H. W.; Lee, L. N.; Chan, A.
S. C.; Kwong, F. Y. Eur. J. Org. Chem. 2008, 3403.
(b) Shibata, T.; Toshida, N.; Yamasaki, M.; Maekawa, S.;
Takagi, K. Tetrahedron 2005, 61, 9974. (c) Jeong, N.; Kim,
D. H.; Choi, J. H. Chem. Commun. 2004, 1134.
(6) Harada, Y.; Nakanishi, J.; Fujihara, H.; Tobisu, M.;
Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2007, 129,
5766.
(7) (a) Artok, L.; Kuş, M.; Aksın-Artok, Ö.; Dege, F. N.;
Özkılınç, F. Y. Tetrahedron 2009, 65, 9125. (b) Kuş, M.;
Artok, Ö. A.; Ziyanak, F.; Artok, L. Synlett 2008, 2587.
(8) Abbreviations: BIPHEP = 2,2′-bis(diphenylphosphino)-1,1′-
biphenyl; Xantphos = 9,9-dimethyl-4,5-bis(diphenyl-
phosphino)xanthene; dppe = 1,2-bis(diphenylphosphino)-
ethane; dppp = 1,3-bis(diphenylphosphino)propane; dppf =
1,1′-bis(diphenylphosphino)ferrocene; BINAP = 2,2′ =
bis(diphenylphosphino)-1,1′-binaphthyl.
Scheme 4 Possible reaction pathway
In conclusion, we report here on the rhodium(I)-catalyzed
carbonylative arylation of alkynes with various arylbo-
ronic acids in the presence of formaldehyde as a carbonyl
source, resulting in a carbon monoxide gas-free reaction,
affording enones. The addition of BIPHEP, the amount of
which must not account for all the total phosphine-free
rhodium complex [RhCl(cod)]2 leads to the partial forma-
tion of phosphine-ligated complex [RhCl(BIPHEP)]2
along with intact [RhCl(cod)]2, which are mainly involved
in the decarbonylation of formaldehyde to produce a car-
bonyl moiety and the subsequent carbonylative arylation
of alkynes with arylboronic acids using the resulting car-
bonyl moiety, respectively, leading to an efficient carbon-
ylative arylation to produce α,β-enones.
(9) (a) Fristrup, P.; Kreis, M.; Palmelund, A.; Norrby, P.-O.;
Madsen, R. J. Am. Chem. Soc. 2008, 130, 5206.
(b) Calderazzo, F. Angew. Chem., Int. Ed. Engl. 1977, 16,
299.
In a 10 mL screw-capped vial were placed [RhCl(cod)]2 (24.6 mg,
0.05 mmol), BIPHEP (5.3 mg, 0.01 mmol), alkyne 1 (1 mmol), ar-
ylboronic acid 2 (2 mmol), paraformaldehyde (150.2 mg, 5 mmol),
and 1,4-dioxane (1 mL). The mixture was degassed by three freeze-
pump-thaw cycles and then sealed under N2. The mixture was
stirred at 80 °C for 20 h, cooled to r.t. and then concentrated in vac-
uo. The residue was purified by flash chromatography on silica gel.
(10) The role of TFA is, at present, unclear. We postulate the
following two possibilities: (i) it promotes the generation of
free formaldehyde from paraformaldehyde, and (ii) it
accelerates the protonation of the vinylrhodium species E to
give the product.
(11) The fact that the deuteration of the β-position of the enones
3aa does not reach 99% is due to H–D exchange via 1,3- and
1,4-shift of the rhodium in the intermediate E to other Ph
rings at β-position: (a) Sasaki, K.; Nishimura, T.; Shintani,
R.; Kantchev, E. A. B.; Hayashi, T. Chem. Sci. 2012, 3,
1278. (b) Hayashi, T.; Inoue, K.; Taniguchi, N.; Ogasawara,
M. J. Am. Chem. Soc. 2001, 123, 9918; indeed, the H
integration of the aromatic ring is lower than that of 3aa
from the reaction of 1a with PhB(OH)2 using (CH2O)n.
(12) Even when C6F5CHO, which should not generate a RhH
species, was used as a carbonyl source, the reaction gave
Acknowledgment
This research was supported by a Grant-in-Aid for Scientific Re-
search on Innovative Areas ‘Molecular Activation Directed toward
Straightforward Synthesis’ from the Ministry of Education, Cultu-
re, Sports, Science and Technology, Japan. We also thank Ms. Yuri-
ko Nishiyama, Ms. Yoshiko Nishikawa, and Mr. Shouhei Katao for
assistance in obtaining HRMS and X-ray crystallographic data.
Synlett 2014, 25, 1155–1159
© Georg Thieme Verlag Stuttgart · New York