Full Paper
Science Suite.[29] Geometry optimizations were performed by using
the B3LYP functional and the 6-31G** basis set, in which the transi-
tion metals are represented by using the Los Alamos LACVP** basis,
which includes relativistic effective core potentials. The energies of
the optimized structures were re-evaluated by performing addi-
tional single-point calculations on each optimized geometry using
Dunning's correlation-consistent triple-ꢀ basis set cc-pVTZ(-f),
which includes a double set of polarization functions. The results
of vibrational frequency calculations based on analytical second de-
rivatives at the B3LYP/6-31G**(LACVP**) level of theory were used
to confirm proper convergence to local minima and to derive the
zero-point energies (ZPEs) and entropy corrections at room temper-
ature, at which temperature the unscaled frequencies were used.
[8] a) G. Landi, W. R. Fahrner, S. Concilio, L. Sessa, H. C. Neitzert, IEEE J.
Electron Devices. Soc. 2014, 2, 179–181; b) P. Kathirgamanathan (South
Bank University), WO2000026323, 2000; c) M. E. Thompson, Z. Liu, C. Wu
(University Of Southern California), WO20120160742012.
[9] a) S. P. Gavrish, Y. D. Lampeka, P. Lightfoot, Cryst. Growth Des. 2015, 15,
2024–2032; b) M. Tominaga, T. Kawaguchi, K. Ohara, K. Yamaguchi, H.
Masu, I. Azumaya, CrystEngComm 2016, 18, 266–273.
[10] a) F. Borbone, U. Caruso, S. Concilio, S. Nabha, B. Panunzi, S. Piotto, R.
Shikler, A. Tuzi, Eur. J. Inorg. Chem. 2016, 818–825; b) F. Borbone, U.
Caruso, S. Concilio, S. Nabha, S. Piotto, R. Shikler, A. Tuzi, B. Panunzi,
Inorg. Chim. Acta 2017, 458, 129–137; c) f. Borbone, A. Tuzi, B. Panunzi,
S. Piotto, S. Concilio, R. Shikler, S. Nabha, R. Centore, Cryst. Growth Des.
2017, 17, 5517–5523; d) B. Panunzi, F. Borbone, A. Capobianco, S. Con-
cilio, R. Diana, A. Peluso, S. Piotto, A. Tuzi, A. Velardo, U. Caruso, Inorg.
Chem. Commun. 2017, 84, 103–108.
Supporting Information (see footnote on the first page of this
article): Additional crystallographic material.
[11] M. Argeri, F. Borbone, U. Caruso, M. Causà, S. Fusco, B. Panunzi, A. Rovi-
ello, R. Shikler, A. Tuzi, Eur. J. Inorg. Chem. 2014, 5916–5924.
[12] F. Borbone, U. Caruso, M. Causà, S. Fusco, B. Panunzi, A. Roviello, R. Shi-
kler, A. Tuzi, Eur. J. Inorg. Chem. 2014, 2695–2703.
Acknowledgments
The authors would like to thank the Italian Ministry for Research
MIUR (Grant Number 300395FRB16) for financial support.
[13] A. Lavrenova, D. W. Balkenende, Y. Sagara, S. Schrettl, Y. C. Simon, C.
Weder, J. Am. Chem. Soc. 2017, 139, 4302–4305.
[14] a) X. Lin, I. Telepeni, A. J. Blake, A. Dailly, C. M. Brown, J. M. Simmons, M.
Zoppi, G. S. Walker, K. M. Thomas, T. J. Mays, J. Am. Chem. Soc. 2009,
131, 2159–2171; b) X. Feng, R. Li, L. Wang, S. W. Ng, G. Qin, L. Ma, Cryst-
EngComm 2015, 17, 7878–7887; c) M. Du, X.-J. Zhao, J. Mol. Struct. 2003,
655, 191–197; d) Z. Fang, W. Yang, J. He, K. Ding, X. Wu, Q. Zhang, R. Yu,
C. Lu, CrystEngComm 2012, 14, 4794–4800; e) X.-W. Wu, F. Pan, D. Zhang,
G.-X. Jin, J.-P. Ma, CrystEngComm 2017, 19, 5864–5872.
Keywords: Zinc · Self-assembly · Heterocycles ·
Luminescence
[15] a) V. Bugatti, P. Iannelli, S. P. Piotto, S. Bellone, M. Ferrara, H. C. Neitzert,
A. Rubino, D. Della Sala, P. Vacca, Synth. Met. 2006, 156, 13–20; b) Z. Sun,
A. Martinez, F. Wang, Nat. Photonics 2016, 10, 227; c) S. Concilio, V. Bu-
gatti, P. Iannelli, S. P. Piotto, Int. J. Polym. Sci. 2010, 581056; d) A. Carella,
R. Centore, L. Mager, A. Barsella, A. Fort, Org. Electron. 2007, 8, 57–62; e)
P. Morvillo, R. Diana, R. Ricciardi, E. Bobeico, C. Minarini, J. Sol-Gel Sci.
Technol. 2015, 73, 550–556.
[16] M. Casalboni, U. Caruso, A. De Maria, M. Fusco, B. Panunzi, A. Quatela, A.
Roviello, F. Sarcinelli, A. Sirigu, J. Polym. Sci., Part A: Polym. Chem. 2004,
42, 3013–3022.
[17] A. F. Li, Y. B. Ruan, Q. Q. Jiang, W. B. He, Y. B. Jiang, Chem. Eur. J. 2010,
16, 5794–5802.
[18] A. Carella, A. Castaldo, R. Centore, A. Fort, A. Sirigu, A. Tuzi, J. Chem. Soc.
Perkin Trans. 2 2002, 1791–1795.
[19] a) R. Wang, Y. Cao, D. Jia, L. Liu, F. Li, Optical Mater. 2013, 36, 232–237;
b) O. Kotova, K. Lyssenko, A. Rogachev, S. Eliseeva, I. Fedyanin, L. Lepnev,
L. Pandey, A. Burlov, A. Garnovskii, A. Vitukhnovsky, J. Photochem. 2011,
218, 117–129.
[20] F. Borbone, U. Caruso, S. D. Palma, S. Fusco, S. Nabha, B. Panunzi, R.
Shikler, Macromol. Chem. Phys. 2015, 216, 1516–1522.
[1] K. K. Jha, A. Samad, Y. Kumar, M. Shaharyar, R. L. Khosa, J. Jain, V. Kumar,
P. Singh, Eur. J. Med. Chem. 2010, 45, 4963–4967.
[2] a) F. A. Omar, N. M. Mahfouz, M. A. Rahman, Eur. J. Med. Chem. 1996, 31,
819–825; b) E. Palaska, G. Şahin, P. Kelicen, N. T. Durlu, G. Altinok, Farm-
aco 2002, 57, 101–107; c) T. Ramalingam, P. Sattur, Eur. J. Med. Chem.
1990, 25, 541–544; d) K. Raman, H. K. Singh, S. K. Salzman, S. S. Parmar,
J. Pharm. Sci. 1993, 82, 167–169.
[3] K. L. Rai, N. Linganna, Farmaco 2000, 55, 389–392.
[4] M. Harfenist, D. J. Heuser, C. T. Joyner, J. F. Batchelor, H. L. White, J. Med.
Chem. 1996, 39, 1857–1863.
[5] G. Prakash, R. Ramachandran, M. Nirmala, P. Viswanathamurthi, J. San-
martin, Inorg. Chim. Acta 2015, 427, 203–210.
[6] a) D. Acierno, E. Amendola, S. Bellone, S. Concilio, L. Ferrara, P. Iannelli,
H. C. Neitzert, A. Rubino, F. Villani, J. Non-Cryst. Solids 2004, 338–340,
278–282; b) D. Acierno, E. Amendola, S. Bellone, S. Concilio, P. Iannelli,
H. C. Neitzert, A. Rubino, F. Villani, Macromolecules 2003, 36, 6410–6415;
c) S. Concilio, V. Bugatti, P. Iannelli, S. P. Piotto, Int. J. Polym. Sci. 2010,
581056; d) H. C. Neitzert, S. Cuccurullo, S. Concilio, P. Iannelli, J. Sensors
2016, 1642681; e) H. C. Neitzert, M. Ferrara, S. Bellone, A. Rubino, S.
Concilio, P. Iannelli, P. Vacca, L. Ferrara in Proceedings of SPIE - The Interna-
tional Society for Optical Engineering, Vol. 5840 PART I, Sevilla (Spain),
2005, pp. 139–146; f) H. C. Neitzert, M. Ferrara, A. Rubino, S. Concilio, P.
Iannelli, P. Vacca, L. Ferrara, C. Minarini, J. Non-Cryst. Solids 2006, 352,
1695–1699; g) M. Petrosino, A. Rubino, S. Concilio in 3rd International
Conference on Signals, Circuits and Systems, SCS 2009, Medenine (Tunisia),
2009.
[21] J. C. de Mello, H. F. Wittmann, R. H. Friend, Adv. Mater. 1997, 9, 230–232.
[22] SADABS, Bruker AXS Inc., Madison, Wisconsin (USA) 2001.
[23] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A.
Guagliardi, A. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr.
1999, 32, 115–119.
[24] G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8.
[25] L. J. Farrugia, J. Appl. Crystallogr. 1999, 32, 837–838.
[7] a) C. Borriello, S. Concilio, C. Minarini, P. Iannelli, T. Di Luccio in AIP Confer-
ence Proceedings, Vol. 1459, 1st ed., Ischia (Italy), 2012, pp. 151–153; b)
C. Borriello, S. Concilio, C. Minarini, S. Piotto, T. Di Luccio, Polym. Compos.
2013, 34, 1471–1476; c) A. Bruno, C. Borriello, T. Di Luccio, L. Sessa, S.
Concilio, S. A. Haque, C. Minarini, Optical Mater. 2017, 66, 166–170; d) A.
Bruno, C. Borriello, T. D. Luccio, G. Nenna, L. Sessa, S. Concilio, S. A.
Haque, C. Minarini, J. Nanopart. Res. 2013, 15, 2085; e) D. Acierno, S.
Concilio, A. Diodati, P. Iannelli, S. P. Piotto, P. Scarfato, Liquid Crystals
2002, 29, 1383–1392; f) H. C. Neitzert, S. Concilio, P. Iannelli, P. Vacca in
AIP Conference Proceedings, Vol. 1199, Rio de Janeiro (Brazil) ( 2009, pp.
139–140.
[26] L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565–565.
[27] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E.
Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J.
Appl. Crystallogr. 2008, 41, 466–470.
[28] A. D. Bochevarov, E. Harder, T. F. Hughes, J. R. Greenwood, D. A. Braden,
D. M. Philipp, D. Rinaldo, M. D. Halls, J. Zhang, R. A. Friesner, Int. J. Quan-
tum Chem. 2013, 113, 2110–2142.
[29] Schrödinger, Release 2018–1 (Jaguar), Schrödinger, LLC, New York, 2018.
Received: March 19, 2018
Eur. J. Inorg. Chem. 0000, 0–0
8
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim