Beilstein J. Org. Chem. 2014, 10, 1272–1281.
5. Adio, A. M.; König, W. A. Phytochemistry 2005, 66, 599–609.
in low yields (16%), where the remainder of the mass balance
was attributed to oxidative degradation.
6. Adam, W.; Griesbeck, A. G. In CRC Handbook of Organic
Photochemistry and Photobiology; Horspool, W. M.; Song, P., Eds.;
CRC Press: Boca Raton, 1992.
Bis(styrene) 2u afforded the identical fused 1,2-dioxane
observed in Yoon’s report in 79% yield (5.7:1 dr). Tethered
trisubstituted aliphatic alkene substrate 2v, along with
bis(styrene) substrate 2w were unfortunately unsuccessful,
producing neither of the desired fused 1,2-dioxane products in
appreciable amounts. Degradation pathways were dominant for
2v and mainly unreacted starting material was observed 2w.
7. Bloodworth, A. J.; Eggelte, H. J. In Singlet Oxygen; Frimer, A. A., Ed.;
CRC Press: Boca Raton, 1985; Vol. II.
8. Iesce, M. R. In Synthetic Organic Photochemistry; Griesbeck, A. G.;
Mattay, J., Eds.; Marcel Dekker: New York; pp 299–363.
9. Harris, J. R.; Waetzig, S. R.; Woerpel, K. A. Org. Lett. 2009, 11,
10.Krabbe, S. W.; Do, D. T.; Johnson, J. S. Org. Lett. 2012, 14,
11.Rubush, D. M.; Morges, M. A.; Rose, B. J.; Thamm, D. H.; Rovis, T.
12.Miyashi, T.; Konno, A.; Takahashi, Y. J. Am. Chem. Soc. 1988, 110,
Conclusion
In the presence of an organic single electron photooxidant, a
variety of dienes were demonstrated to undergo a cyclization/
endoperoxidation cascade sequence to form 1,2-dioxanes.
Requirements for successful diene reactivity are the presence of
an oxidizable olefin and an alkene that can efficiently react with
the putative alkene cation radical to form a more stable distonic
cation radical. If available, a Cope-like pathway can compete
and suppress endoperoxide formation. With these parameters in
mind, this reaction could provide a platform for the discovery of
novel biologically-active endoperoxides.
13.Takahashi, Y.; Okitsu, O.; Ando, M.; Miyashi, T. Tetrahedron Lett.
14.Kamata, M.; Ohta, M.; Komatsu, K.-i.; Kim, H.-S.; Wataya, Y.
Tetrahedron Lett. 2002, 43, 2063–2067.
15.Parrish, J. D.; Ischay, M. A.; Lu, Z.; Guo, S.; Peters, N. R.; Yoon, T. P.
16.Kamata, M.; Hagiwara, J.-i.; Hokari, T.; Suzuki, C.; Fujino, R.;
Kobayashi, S.; Kim, H.-S.; Wataya, Y. Res. Chem. Intermed. 2013, 39,
17.Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40,
Supporting Information
18.Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828–6838.
Supporting Information File 1
19.Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113,
Experimental procedures and characterization data.
20.Martiny, M.; Steckhan, E.; Esch, T. Chem. Ber. 1993, 126, 1671–1682.
See for excited state reduction potential converted from E vs NHE to E
vs SCE.
Supporting Information File 2
X-ray data.
21.Miranda, M. A.; Garcia, H. Chem. Rev. 1994, 94, 1063–1089.
22.Kamata, M.; Kaneko, J.-i.; Hagiwara, J.-i.; Akaba, R. Tetrahedron Lett.
23.Hamilton, D. S.; Nicewicz, D. A. J. Am. Chem. Soc. 2012, 134,
Acknowledgements
24.Fukuzumi, S.; Ohkubo, K. Chem. Sci. 2013, 4, 561–574.
We gratefully acknowledge the David and Lucile Packard
Foundation for financial support. Additionally, we thank
Nathan Romero for DFT calculations and Dr. Peter White for
X-ray analysis.
25.Nguyen, T. M.; Nicewicz, D. A. J. Am. Chem. Soc. 2013, 135,
26.Perkowski, A. J.; Nicewicz, D. A. J. Am. Chem. Soc. 2013, 135,
27.Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford CT, 2013.
28.Riener, M.; Nicewicz, D. A. Chem. Sci. 2013, 4, 2625–2629.
References
1. Ando, W., Ed. Organic Peroxides; John Wiley & Sons: New York, 1992.
2. Dembitsky, V. M. Eur. J. Med. Chem. 2008, 43, 223–251.
29.Yamashita, T.; Yasuda, M.; Isami, T.; Tanabe, K.; Shima, K.
Tetrahedron 1994, 50, 9275–9286.
3. Li, H.; Huang, H.; Shao, C.; Huang, H.; Jiang, J.; Zhu, X.; Liu, Y.;
Liu, L.; Lu, Y.; Li, M.; Lin, Y.; She, Z. J. Nat. Prod. 2011, 74,
4. Chokpaiboon, S.; Sommit, D.; Bunyapaiboonsri, T.; Matsubara, K.;
Pudhom, K. J. Nat. Prod. 2011, 74, 2290–2294.
1280