C
Z. Fei et al.
Letter
Synlett
drew our attention.8 Simple exposure of the substrate, as a
solution in DMF, to gaseous sulfuryl fluoride as reported did
not provide any conversion, but subsequent addition of te-
tramethylammonium 2,6-dimethylphenoxide to this solu-
tion led to formation of the desired cis product 10 in 72%
yield (entry 3). Sanford’s group reported the in situ genera-
tion of anhydrous tetramethylammonium fluoride from the
combination of sulfuryl fluoride with tetramethylammoni-
um 2,6-dimethylphenoxide.9 We therefore proposed that
the formed intermediate 3d underwent SN2 reaction with
in situ generated anhydrous tetramethylammonium fluo-
ride to give the product (Scheme 3). To the best of our
knowledge, this is a new application of Sanford’s conditions
for the deoxyfluorination of an aliphatic alcohol.
Funding Information
All work described in this paper was funded by Novartis, Inc.()
Acknowledgment
We acknowledge Fabrice Gallou, Wei Li and Ning Ye for helpful dis-
cussions. We thank Yanjie Li for HRMS analyses.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
From 10, we completed the synthesis of target 1 as
shown in Scheme 4. Reduction of the azido group under hy-
drogenation in the presence of Boc2O directly converted 10
into 11 in 88% yield. Methanolysis of the latter provided 12,
and subsequent reductive methylation afforded 13. Finally,
acid treatment of 13 to remove the Boc protecting group
and purification by recrystallization provided 1 as a single
diastereomer in 94% yield and with 99.9% ee.10
References and Notes
(1) (a) Coleman, P. J.; Cox, C. D. WO 2005017190, 2005. (b) Kawato,
H.; Miyazaki, M.; Sugimoto, Y.; Naito, H.; Okayama, T.; Soga, T.;
Uoto, K. WO 2008072655, 2008. (c) Corminboeuf, O.; Pozzi, D.
WO 2013171694, 2013. (d) Guerin, D. J.; Bair, K. W.; Caravella, J.
A.; Ioannidis, S.; Lancia, D. R. Jr.; Li, H.; Mischke, S.; Ng, P. Y.;
Richard, D.; Schiller, S. E. R.; Shelekhin, T.; Wang, Z. WO
2017139778, 2017.
(2) (a) Li, Q.; Wang, W.; Berst, K. B.; Claiborne, A.; Hasvold, L.; Raye,
K.; Tufano, M.; Nilius, A.; Shen, L. L.; Flamm, R.; Alder, J.; Marsh,
K.; Crowell, D.; Chu, D. T. W.; Plattner, J. J. Bioorg. Med. Chem.
Lett. 1998, 8, 1953. (b) Bouzard, D.; Di Cesare, P.; Essiz, M.;
Jacquet, J. P.; Kiechel, J. R.; Remuzon, P.; Weber, A.; Oki, T.;
Masuyoshi, M.; Kessler, R. E.; Fung-Tomc, J.; Desiderio, J. J. Med.
Chem. 1990, 33, 1344. (c) Wang, C.-S.; Li, T.-Z.; Cheng, Y.-C.;
Zhou, J.; Mei, G.-J.; Shi, F. J. Org. Chem. 2019, 84, 3214.
(3) Tsuzuki, Y.; Chiba, K.; Mizuno, K.; Tomita, K.; Suzuki, K. Tetrahe-
dron: Asymmetry 2001, 12, 2989.
F
F
F
O
cat. PtO2, H2
O
K2CO3
MeOH
N
N
NH
CF3 Boc2O, MeOH
88%
CF3
N3
BocHN
BocHN
12
11
10
F
F
CH2O, NaBH4
HCl
N
Me
N
Me
MeOH
94%
MeOH
73% over
two steps
BocHN
2HCl
H2N
1
13
Scheme 4 Completion of the synthesis of 1
(4) (a) Martinez, L. E.; Leighton, J. L.; Carsten, D. H.; Jacobsen, E. N.
J. Am. Chem. Soc. 1995, 117, 5897. (b) Jacobsen, E. N.; Tokunaga,
M.; Larrow, J. F. US Patent 6262278, 2001.
(5) Beckmann, H. S. G.; Wittmann, V. In Organic Azides: Syntheses
and Applications; Bräse, S.; Banert, K., Ed.; John Wiley & Sons:
Chichester, 2010, 469–490.
(6) Lewis, E. S.; Boozer, C. E. J. Am. Chem. Soc. 1952, 74, 308.
(7) Cram, D. J. J. Am. Chem. Soc. 1953, 75, 332.
(8) Ishii, A.; Yasumoto, M. WO 2010047266, 2010.
In summary, we have developed a stereoselective syn-
thesis of cis-(S,R)-3-amino-4-fluoro-1-methylpyrrolidine
(1) starting from known chiral non-racemic 3, which is eas-
ily accessible by applying Jacobsen’s desymmetrization of
an epoxide. The deoxyfluorination of 3 was studied toward
the cis selectivity. While DAST alone led to the trans isomer
exclusively, the conditions were tuned by adding pyridine
to improve the cis selectivity. Eventually, complete cis selec-
tivity was achieved by applying the combination of SO2F2
(9) Cismesia, M. A.; Ryan, S. J.; Bland, D. C.; Sanford, M. S. J. Org.
Chem. 2017, 82, 5020.
(10) Characterization of 1. Yield: 99 mg (94%); white solid; mp 264–
266 °C. 1H NMR (400 MHz, D2O): = 5.55 (dt, J = 51.7, 3.5 Hz, 1
H), 4.36 (dtd, J = 23.4, 8.9, 3.5 Hz, 1 H), 4.01 (m, 1 H), 3.88 (m, 1
H), 3.82–3.52 (m, 2 H), 3.00 (s, 3 H). 13C NMR (101 MHz, D2O):
= 90.4 (d, J = 183.82 Hz), 59.6 (d, J = 21.21 Hz), 54.4, 50.3 (d, J =
17.17 Hz), 42.6. 19F NMR (376 MHz, D2O): = –196.7. 19F NMR
(376 MHz, CD3OD): = –198.1. HRMS (ESI): m/z [M + H – 2
HCl]+ calcd for C5H12FN2: 119.0979; found: 119.0978.
with
tetramethylammonium
2,6-dimethylphenoxide
(Sanford conditions). Due to its unique properties, we be-
lieve that the synthesis of this highly valuable chiral build-
ing block will be of significant interest to chemists and
pharmacologists.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–C