4370
H. Firouzabadi et al. / Tetrahedron Letters 42 (2001) 4369–4371
Herein we report that zinc dichromate trihydrate14 is an
efficient reagent for the preparation of a-ketophospho-
nates by oxidation of a-hydroxyphosphonates at room
temperature under solvent-free conditions (Scheme 1).
We have compared our results with those reported for
CrO3/Al2O3 (Table 1).11b
7. Yamashita, M.; Kojima, M.; Yoshida, H.; Ogata, T.;
Inokawa, S. Bull. Chem. Soc. Jpn. 1980, 53, 1625.
8. (a) Ackerman, B.; Jordan, T. A.; Eddy, C. R.; Swen,
D. J. Am. Chem. Soc. 1956, 78, 4444; (b) Kluger, R.;
Pick, D. C.; Chin, J. Can. J. Chem. 1978, 56, 1792; (c)
Jugelt, W.; Andreae, S.; Schubert, G. J. Prackt. Chem.
1971, 83.
9. (a) Berlin, K. D.; Hellwege, D. M.; Nagabhushanam,
M. J. Org. Chem. 1965, 1265; (b) Berlin, K. D.; Taylor,
H. A. J. Am. Chem. Soc. 1964, 86, 3862.
10. (a) Texier-Boullet, F.; Foucaud, A. Synthesis 1982, 916;
(b) Baraldi, P. G.; Guarneri, M.; Moroder, F.; Polloni,
G. P.; Simoni, D. Synthesis 1982, 11, 653; (c) Sardar-
ian, A. R.; Kaboudin, B. Synth. Commun. 1997, 27,
543.
As shown in Table 1, in the presence of zinc dichromate
trihydrate, various (a-hydroxyphenylmethyl) phospho-
nates (1a–k) were cleanly converted into the corre-
sponding a-ketophosphonates (2a–k) in excellent yields
(90–96%). a-Hydroxy-2-naphthyl and alkyl phospho-
nates (1l,m) were also oxidized efficiently giving the
corresponding a-ketophosphonates (2l,m) in 91–92%
yields.
11. (a) Smyth, M. S.; Ford, Jr., H.; Burke, Jr., T. R. Tet-
rahedron Lett. 1992, 33, 4137; (b) Kaboudin, B. Tetra-
hedron Lett. 2000, 41, 3169; (c) Liao, Y.; Shabany, H.;
Christopher, D. S. Tetrahedron Lett. 1998, 39, 8389.
12. Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025 and
references cited therein.
13. (a) Firouzabadi, H.; Karimi, B.; Abbassi, M. J. Chem.
Res. (S) 1999, 236; (b) Firouzabadi, H.; Iranpoor, N.;
Zolfigol, M. A. Synth. Commun. 1998, 28, 1179.
14. Firouzabadi, H.; Sardarian, A. R.; Moosavipoor, H.;
Afshari, G. M. Synthesis 1986, 285.
Comparison of the results in the presence of zinc
dichromate trihydrate with those reported by CrO3/
Al2O3 indicated that: (1) the yields are higher; (2) the
reaction occurs immediately; (3) the support for the
oxidation was not required,15 and (4) the ratio of the
oxidant used was less.16,17
In conclusion, mild reaction conditions, high reaction
rates, high yields, solventless conditions deserve to be
mentioned for the present procedure and make it a
useful method for the preparation of various a-
ketophosphonates without requiring a large amount of
the oxidant.
15. In our laboratory, we tried similar oxidations with
unsupported CrO3. The results showed that this reagent
was sluggish for this aim and a messy reaction mixture
was obtained.
16. Typical procedure for the preparation of h-ketophospho-
nates from 1-hydroxyphosphonates: A mixture of the a-
hydroxyphosphonate 1 (5 mmol) and zinc dichromate
trihydrate14 (5 mmol) was ground together in a mortar
with a pestle. The reaction occurred immediately and
the mixture was washed with carbon tetrachloride (4×
15 ml) and dried over anhydrous Na2SO4. The solvent
was evaporated to give the desired crude product. The
pure product(s) were obtained by vacuum distillation in
90–96% yields (Table 1).
Acknowledgements
We thank Shiraz University Research Council and
National Research Council of I.R. Iran for grant
no.464 for the partial support of this work.
References
17. Spectral data of some a-ketophosphonates: 2a [1H
NMR (CDCl3, TMS): l 1.37–1.68 (t, 6H, JHH=7 Hz,
1. (a) Sprecher, M.; Kost, D. J. Am. Chem. Soc. 1994,
116, 1016; (b) Burnaeva, L. M.; Romanov, S. V.;
Mironov, V. F.; Konovalova, I. V.; Ivkova, G. A.;
Azancheev, N. M.; Cherkasov, R. A. Russ. J. Gen.
Chem. 1997, 67, 1310; (c) Breuer, E.; Moshe, R. Isr. J.
Chem. 1986, 27, 45; (d) Telan, L. A.; Poon, C.-D.;
Evans, Jr., S. A. J. Org. Chem. 1996, 61, 7455.
2. Afarinkia, K.; Vinader, M. V. In Organic Functional
Group Transformations; Moody, C. J., Ed. The synthe-
sis of acyl phosphorus, -arsenic, -antimony or -bismuth
functions.; Elsevier: London, 1995; pp. 393–407.
3. Scherer, H.; Hartmann, A.; Regitz, M.; Tunggal, B. D.;
Gunther, H. Chem. Ber. 1972, 105, 3357.
2-OCH2CH3), 4.08–4.28 (dq, 4H, JPOCH=7.1 Hz, JHH
=
7 Hz, 2-OCH2CH3), 7.28–7.6 (m, 3H), 8.03–8.25 (m,
2H) ppm; IR (neat): w 1660 (CꢁO), 1250 (PꢁO) cm−1
;
MS: M+ (242)]. 2b [1H NMR (CDCl3, TMS): l 1.29–
1.42 (t, 6H, JHH=7 Hz, 2-OCH2CH3), 2.35 (s, 3H,
-CH3), 4.11–4.16 (dq, 4H, JPOCH=7.1 Hz, JHH=7 Hz,
2-OCH2CH3), 7.12–7.21 (m, 2H), 8.04–8.07 (m, 2H)
ppm; IR (neat): w 1650 (CꢁO), 1260 (PꢁO) cm−1; MS:
M+ (256)]. 2c [1H NMR (CDCl3, TMS): l 1.11–1.29 (t,
6H, JHH=7 Hz, 2-OCH2CH3), 3.80 (s, 3H, -CH3),
3.90–4.10 (dq, 4H,
JPOCH=7.1 Hz, JHH=7 Hz, 2-
OCH2CH3), 6.84–6.90 (m, 2H), 7.42–7.50 (m, 2H) ppm;
IR (neat): w 1650 (CꢁO), 1265 (PꢁO) cm−1; MS: M+
(272)]. 2d [1H NMR (CDCl3, TMS): l 1.25–1.32 (t, 6H,
4. (a) Krzyzanowska, B.; Pilichowska, S. Pol. J. Chem.
1988, 62, 165; (b) Karaman, R.; Goldblum, A.; Breuer,
E.; Leader, H. J. Chem. Soc., Perkin Trans. 1 1989,
765.
J
HH=7 Hz, 2-OCH2CH3), 2.23 (s, 6H, 2-CH3, 6-CH3),
2.27 (s, 3H, 4-Me), 4.06–4.17 (dq, 4H, JPOCH=7.1 Hz,
J
HH=7 Hz, 2-OCH2CH3), 6.83 (s, 2H) ppm; IR (neat):
w 1660 (CꢁO), 1250 (PꢁO) cm−1; MS: M+ (284)]. 2g [1H
NMR (CDCl3, TMS): l 1.13–1.42 (t, 6H, JHH=7 Hz,
5. Breuer, E.; Karaman, R.; Golblum, A.; Gibson, D. J.
Chem. Soc., Perkin Trans. 1 1988, 3047.
6. (a) Gajda, T. Tetrahedron: Asymmetry 1994, 5, 1965;
(b) Meier, C.; Laux, W. H. G.; Bats, J. W. Liebigs
Ann. 1995, 1963.
2-OCH2CH3), 4.15–4.33 (dq, 4H, JPOCH=7.1 Hz, JHH
7 Hz, 2-OCH2CH3), 7.47–7.50 (m, 2H), 8.21–8.24 (m,
2H) ppm; IR (neat): w 1660 (CꢁO), 1260 (PꢁO) cm−1
=
;