ACS Catalysis
Letter
H2 with 1 and 2 leading to the formation of σ-Ir(H2) species
AUTHOR INFORMATION
Corresponding Author
Notes
■
1
from 1 but Ir−H species from 2 was verified by VT H NMR
(500 MHz) spin−lattice relaxation time (T1, ms) measure-
ments (Figure 4).8 A short T1 (min) of 49 ms at 233 K in case
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
J.C. thanks DST and IISER Bhopal for generous financial
support. S.S. is a recipient of UGC doctoral fellowship. The
authors thank Mr. Rajbeer Singh for help in T1 measurements.
REFERENCES
■
(1) (a) Traut, T. Allosteric Regulatory Enzymes; Springer: New York,
2008. (b) Ringe, D.; Petsko, G. A. Science 2008, 320, 1428−1429.
(2) For recent reviews on switchable catalysis, see: (a) Blanco, V.;
Leigh, D. A.; Marcos, V. Chem. Soc. Rev. 2015, 44, 5341−5370.
(b) Guillaume, S. M.; Kirillov, E.; Sarazin, Y.; Carpentier, J.-F. Chem. -
Eur. J. 2015, 21, 7988−8003. (c) Wang, F.; Liu, X.; Willner, I. Angew.
Chem., Int. Ed. 2015, 54, 1098−1129. (d) Schmittel, M. Chem.
Commun. 2015, 51, 14956−14968. (e) Lifschitz, A. M.; Rosen, M. S.;
McGuirk, C. M.; Mirkin, C. A. J. Am. Chem. Soc. 2015, 137, 7252−
Figure 4. Temperature-dependent spin−lattice relaxation time (T1,
ms) at 500 MHz in CD2Cl2, measured for the species generated by the
reaction of H2 with (A) complex 1, and (B) complex 2.
of 1 and a long T1 (min) of 390 ms at 233 K in case of 2 were
in good agreement with the proposal, supported by reported
values as well.8 Next, initial-rate analysis was carried out to
determine the order of each component and the results
suggested the following rate laws: rate = kobs[cat][H2] with
catalyst 2 and rate = kobs[cat][H2][imine] with catalyst 1. The
rate-laws revealed that for the 2-catalyzed reaction, the iridium
catalyst and H2 are likely to be involved in the rate-determining
step (rds), while for the 1-catalyzed reaction, the rds involves
catalyst, H2, and imine. To verify the involvement of H2 in the
rds, the kinetic deuterium isotope effect (KDIE) was
determined experimentally via conducting the catalytic hydro-
genation reaction with H2 and D2 under identical conditions.
The kH/kD value of 3.45 for 2-catalyzed reaction and 2.45 for 1-
catalyzed reaction supported the involvement of H2 in the rds.
These kinetic data, reactivity with H2 and the corresponding T1
(min) values, KDIE, and some additional mechanistic
investigation, suggested different catalytic cycles and the nature
of the rds for the two catalysts which can be considered as the
basis to justify the observed slow or fast catalysis with 1 or 2,
respectively (see Supporting Information for details).
In summary, two acid/base responsive iridium(III) com-
plexes were used to design a molecular switch which operates
on highly reversible variable coordination modes of the ligand
backbone. Such a stimuli-responsive molecular coordination-
switch was utilized for developing a smart catalyst system to
modulate catalytic activity and function on demand on a highly
switchable platform. The system was explored in catalytic
hydrogenation of a range of imine substrates with molecular
dihydrogen gas under ambient pressure and simple conditions
featuring a high ON/OFF ratio, high switchability, and
robustness. Controlled studies suggested a difference in the
mode of activation of dihydrogen as the probable reason for the
dramatic difference in the activity of the ON and OFF states of
the catalyst.
7261. (f) Gostl, R.; Senf, A.; Hecht, S. Chem. Soc. Rev. 2014, 43, 1982−
̈
1996. (g) Leibfarth, F. A.; Mattson, K. M.; Fors, B. P.; Collins, H. A.;
Hawker, C. J. Angew. Chem., Int. Ed. 2013, 52, 199−210. (h) Neilson,
B. M.; Bielawski, C. W. ACS Catal. 2013, 3, 1874−1885. (i) Stoll, R.
S.; Hecht, S. Angew. Chem., Int. Ed. 2010, 49, 5054−5075. For a few
recent representative articles, see: (j) Ouyang, G.-H.; He, Y.-M.; Li, Y.;
Xiang, J.-F.; Fan, Q.-H. Angew. Chem., Int. Ed. 2015, 54, 4334−4337.
(k) Neumann, P.; Dib, H.; Caminade, A.-M.; Hey-Hawkins, E. Angew.
Chem., Int. Ed. 2015, 54, 311−314. (l) Lifschitz, A. M.; Young, R. M.;
Mendez-Arroyo, J.; Stern, C. L.; McGuirk, C. M.; Wasielewski, M. R.;
Mirkin, C. A. Nat. Commun. 2015, 6, 6541−6548. (m) Zhao, D.;
Neubauer, T. M.; Feringa, B. L. Nat. Commun. 2015, 6, 6652−6657.
(n) Galli, M.; Lewis, J. E. M.; Goldup, S. M. Angew. Chem., Int. Ed.
2015, 54, 13545−13549. (o) Mao, X.; Tian, W.; Wu, J.; Rutledge, G.
C.; Hatton, T. A. J. Am. Chem. Soc. 2015, 137, 1348−1355. (p) Geri, J.
B.; Szymczak, N. K. J. Am. Chem. Soc. 2015, 137, 12808−12814.
(q) Guo, C.; Fleige, M.; Janssen-Muller, D.; Daniliuc, C. G.; Glorius,
̈
F. Nat. Chem. 2015, 7, 842−847.
(3) (a) Constable, E. C.; Dunne, S. J.; Rees, D. G. F.; Schmitt, C. X.
Chem. Commun. 1996, 1169−1170. (b) Moorlag, C.; Clot, O.; Wolf,
M. O.; Patrick, B. O. Chem. Commun. 2002, 3028−3029. (c) Moorlag,
C.; Wolf, M. O.; Bohne, C.; Patrick, B. O. J. Am. Chem. Soc. 2005, 127,
6382−6393. (d) Moore, S. A.; Nagle, J. K.; Wolf, M. O.; Patrick, B. O.
Inorg. Chem. 2011, 50, 5113−5122. (e) Lloret, J.; Estevan, F.;
Lahuerta, P.; Hirva, P.; Per
15, 7706−7716.
́
́
ez-Prieto, J.; Sanau, M. Chem. - Eur. J. 2009,
(4) (a) Hull, J. F.; Himeda, Y.; Wang, W.-H.; Hashiguchi, B.; Periana,
R.; Szalda, D. J.; Muckerman, J. T.; Fujita, E. Nat. Chem. 2012, 4, 383−
388. (b) Suna, Y.; Ertem, M. Z.; Wang, W.-H.; Kambayashi, H.;
Manaka, Y.; Muckerman, J. T.; Fujita, E.; Himeda, Y. Organometallics
2014, 33, 6519−6530. (c) Hashiguchi, B. G.; Young, K. J. H.;
Yousufuddin, M.; Goddard, W. A., III; Periana, R. A. J. Am. Chem. Soc.
2010, 132, 12542−12545. (d) Geri, J. B.; Szymczak, N. K. J. Am.
Chem. Soc. 2015, 137, 12808−12814. (e) Moore, C. M.; Szymczak, N.
K. Chem. Commun. 2013, 49, 400−402. (f) Nieto, I.; Livings, M. S.;
Sacci, J. B., III; Reuther, L. E.; Zeller, M.; Papish, E. T. Organometallics
2011, 30, 6339−6342. (g) DePasquale, J.; Nieto, I.; Reuther, L. E.;
Herbst-Gervasoni, C. J.; Paul, J. J.; Mochalin, V.; Zeller, M.; Thomas,
C. M.; Addison, A. W.; Papish, E. T. Inorg. Chem. 2013, 52, 9175−
9183.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(5) Wu, A.; Masland, J.; Swartz, R. D.; Kaminsky, W.; Mayer, J. M.
Inorg. Chem. 2007, 46, 11190−11201.
(6) (a) Khusnutdinova, J. R.; Milstein, D. Angew. Chem., Int. Ed.
2015, 54, 12236−12273. (b) Kubas, G. J. Chem. Rev. 2007, 107,
4152−4205. (c) Kuwata, S.; Ikariya, T. Chem. Commun. 2014, 50,
14290−14300. (d) Lee, D.-H.; Patel, B. P.; Clot, E.; Eisenstein, O.;
Experimental details; spectra; additional text and figures
2427
ACS Catal. 2016, 6, 2424−2428