Journal of the American Chemical Society
[RuII(bpy)3]2+ as a photocatalyst, and [CoIII(NH3)5Cl]2+ as a
Page 4 of 5
Inorg. Chem. 2014, 59, 447. (f) Cussó, O.; Garcia-Bosch, I.; Ribas,
1
2
3
4
5
6
7
8
weak one-electron oxidant. The present study has paved a
new way to use water as the most environmentally benign
oxygen source in asymmetric epoxidation reactions. We
have also provided the first example of using a synthetic
chiral Mn(IV)-oxo complex in the asymmetric epoxidation
of olefins. We are currently synthesizing more chiral Mn-
oxo complexes with different ligands and will investigate
their reactivities in various asymmetric oxidation reactions
to understand the detailed mechanisms as well as the
ligand effect on the enantioselectivity in the asymmetric
epoxidation of olefins.
X.; Lloret-Fillol, J.; Costas, M. J. Am. Chem. Soc. 2013, 135, 14871.
(4) (a) Talsi, E. P.; Bryliakov, K. P. Coord. Chem. Rev. 2012, 256,
1418. (b) Bryliakov, K. P.; Talsi, E. P. Coord. Chem. Rev. 2014, 276,
73. (c) Ottenbacher, R. V.; Samsonenko, D. G.; Talsi, E. P.; Bryliakov,
K. P. ACS Catal. 2014, 4, 1599. (d) Lyakin, O. Y.; Zima, A. M.;
Samsonenko, D. G.; Bryliakov, K. P.; Talsi, E. P. ACS Catal. 2015, 5,
2702. (e) Ottenbacher, R. V.; Talsi, E. P.; Bryliakov, K. P. Catal.
Today 2016, 278, 30. (f) Zima, A. M.; Lyakin, O. Y.; Ottenbacher, R.
V.; Bryliakov, K. P.; Talsi, E. P. ACS Catal. 2016, 6, 5399.
(5) (a) Miao, C.; Wang, B.; Wang, Y.; Xia, C.; Lee, Y.-M.; Nam, W.;
Sun, W. J. Am. Chem. Soc. 2016, 138, 936. (b) Shen, D.; Qiu, B.; Xu,
D.; Miao, C.; Xia, C.; Sun, W. Org. Lett. 2016, 18, 372. (c) Wang, X.;
Miao, C.; Wang, S.; Xia, C.; Sun, W. ChemCatChem 2013, 5, 2489.
(6) (a) Wang, B.; Lee, Y.-M.; Seo, M. S.; Nam, W. Angew. Chem.,
Int. Ed. 2015, 54, 11740. (b) Wang, B.; Lee, Y.-M.; Clémancey, M.;
Seo, M. S.; Sarangi, R.; Latour, J.-M.; Nam, W. J. Am. Chem. Soc.
2016, 138, 2426.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information.
Experimental details, Figures S1 – S11, Tables S1 – S4, and
GC chromatograms. This material is available free of
(7) (a) Kotani, H.; Suenobu, T.; Lee, Y.-M.; Nam, W.; Fukuzumi, S.
J. Am. Chem. Soc. 2011, 133, 3249. (b) Company, A.; Sabenya, G.;
González-Béjar, M.; Gómez, L.; Clémancey, M.; Blondin, G.; Jas-
niewski, A. J.; Puri, M.; Browne, W. R.; Latour, J.-M.; Que, L., Jr.;
Costas, M.; Pérez-Prieto, J.; Lloret-Fillol, J. J. Am. Chem. Soc. 2014,
136, 4624.
AUTHOR INFORMATION
Corresponding Author
(8) Wu, X.; Yang, X.; Lee, Y.-M.; Nam, W.; Sun, L. Chem. Commun.
2015, 51, 4013.
Notes
(9) (a) Fukuzumi, S.; Kishi, T.; Kotani, H.; Lee, Y.-M.; Nam, W.
Nat. Chem. 2011, 3, 38. (b) Fukuzumi, S.; Mizuno, T.; Ojiri, T.
Chem.–Eur. J. 2012, 18, 15794. (c) Herrero, C.; Quaranta, A.; Ri-
coux, R.; Trehoux, A.; Mahammed, A.; Gross, Z.; Banse, F.; Mahy, J.-
P. Dalton Trans. 2016, 45, 706.
The authors declare no competing financial interest.
ACKNOWLEDGMENT
This work was supported by NRF of Korea through the CRI
(NRF-2012R1A3A2048842 to W.N.) and GRL (NRF-2010-
00353 to W.N.) programs, JSPS KAKENHI (No. 16H02268
to S.F.), and NSFC (National Natural Science Foundation of
China, 21473226 to W.S.).
(10) (a) Ohzu, S.; Ishizuka, T.; Hirai, Y.; Fukuzumi, S.; Kojima, T.
Chem.–Eur. J. 2013, 19, 1563. (b) Farràs, P.; Di Giovanni, C.; Clif-
ford, J. N.; Garrido-Barros, P.; Palomares, E.; Llobet, A. Green Chem.
2016, 18, 255.
(11) Sawant, S. C.; Wu, X.; Cho, J.; Cho, K.-B.; Kim, S. H.; Seo, M. S.;
Lee, Y.-M.; Kubo, M.; Ogura, T.; Shaik, S.; Nam, W. Angew. Chem.,
Int. Ed. 2010, 49, 8190.
REFERENCES
(1) (a) Que, L., Jr.; Tolman, W. B. Nature 2008, 455, 333. (b)
Chen, Z.; Yin, G. Chem. Soc. Rev. 2015, 44, 1083. (c) Engelmann, X.;
Monte-Pérez, I.; Ray, K. Angew. Chem., Int. Ed. 2016, 55, 7632.
(2) (a) Saisaha, P.; de Boer, J. W.; Browne, W. R. Chem. Soc. Rev.
2013, 42, 2059. (b) Gopalaiah, K. Chem. Rev. 2013, 113, 3248. (c)
Gelalcha, F. G. Adv. Synth. Catal. 2014, 356, 261. (d) Wang, C.; Ya-
mamoto, H. Chem.-Asian J. 2015, 10, 2056. (e) Fingerhut, A.;
Serdyuk, O. V.; Tsogoeva, S. B. Green Chem. 2015, 17, 2042. (f)
Oloo, W. N.; Que, L., Jr. Acc. Chem. Res. 2015, 48, 2612. (g) Krish-
nan, K. K.; Thomas, A. M.; Sindhu, K. S.; Anilkumar, G. Tetrahedron
2016, 72, 1.
(12) (a) Coombs, J. R.; Morken, J. P. Angew. Chem., Int. Ed. 2016,
55, 2636. (b) Moretti, R. A.; Du Bois, J.; Stack, T. D. P. Org. Lett.
2016, 18, 2528. (c) Sawada, Y.; Matsumoto, K.; Katsuki, T. Angew.
Chem., Int. Ed. 2007, 46, 4559. (d) Murphy, A.; Dubois, G.; Stack, T.
D. P. J. Am. Chem. Soc. 2003, 125, 5250.
(13) Replacement of acetic acid by other acids (e.g., HOTf, HClO4,
trifluoroacetic acid, and 2-ethylhexanoic acid) and acetate anions
(e.g., CH3CO2Na) has failed to yield epoxide in the photocatalytic
oxidation of vinylcyclohexane (SI, Table S4). However, using
propionic acid instead of acetic acid afforded the same amount of
epoxide product (e.g., 59 ± 4%) but with a low enantioselectivity
(e.g., 25 ± 2% ee; SI, Table S4). Thus, acetic acid plays an impor-
tant role in the photocatalytic enantioselective epoxidation of
terminal olefins. However, the exact role of acetic acid has yet to
be clarified.
(3) (a) Cussó, O.; Cianfanelli, M.; Ribas, X.; Gebbink, R. J. M. K.;
Costas, M. J. Am. Chem. Soc. 2016, 138, 2732. (b) Serrano-Plana, J.;
Aguinaco, A.; Belda, R.; Garciá-España, E.; Basallote, M. G.; Com-
pany, A.; Costas, M. Angew. Chem., Int. Ed. 2016, 55, 6310. (c)
Cussó, O.; Ribas, X.; Lloret-Fillol, J.; Costas, M. Angew. Chem., Int. Ed.
2015, 54, 2729. (d) Cussó, O.; Ribas, X.; Costas, M. Chem. Commun.
2015, 51, 14285. (e) Codola, Z.; Lloret-Fillol, J.; Costas, M. Prog.
(14) Kim, S.; Cho, K.-B.; Lee, Y.-M.; Chen, J.; Fukuzumi, S.; Nam, W.
J. Am. Chem. Soc. 2016, 138, 10654.
4
ACS Paragon Plus Environment