E. Yuriev et al. / European Journal of Medicinal Chemistry 39 (2004) 835–847
847
[10] S. Bavirti, J.A. Tayek, Metabolism 52 (2003) 407–412.
5.2.5. Comparative molecular field analysis
[11] R.A. Hill, S. Rudra, B. Peng, D.S. Roane, J.K. Bounds, Y. Zhang,
A. Adloo, T. Lu, Bioorg. Med. Chem. 11 (2003) 2099–2113.
[12] R. Rosskamp, K. Wernicke-Panten, E. Draeger, Diabetes Res. Clin.
Pract. 31 (Suppl) (1996) S33–S42.
[13] UK Prospective Diabetes Study Group, Lancet 352 (1998) 837–853.
[14] M.C. Riddle, J. Clin. Endocrinol. Metab. 88 (2003) 528–530.
[15] P.A. Brady, A. Jovanovic, J. Am. Coll. Cardiol. 42 (2003) 1022–1025.
[16] J.L. Challinor-Rogers, D.C. Kong, M.N. Iskander, G.A. McPherson,
J. Pharmacol. Exp. Ther. 273 (1995) 778–786.
[17] S.R. Byrn, A.T. McKenzie, M.M. Hassan, A.A. Al-Badr, J. Pharm.
Sci. 75 (1986) 596–600.
[18] L. Lins, R. Brasseur, W.J. Malaisse, Pharmacol. Res. 34 (1996) 9–10.
[19] L. Lins, R. Brasseur, W.J. Malaisse, Biochem. Pharmacol. 50 (1995)
1879–1884.
[20] W. Grell, R. Hurnaus, G. Griss, R. Sauter, E. Rupprecht, M. Mark,
P. Luger, H. Nar, H. Wittneben, P. Muller, J. Med. Chem. 41 (1998)
5219–5246.
[21] T.J. Hou, Z.M. Li, Z. Li, J. Liu, X.J. Xu, J. Chem. Inf. Comput. Sci. 40
(2000) 1002–1009.
[22] G. Klebe, U. Abraham, J. Med. Chem. 36 (1993) 70–80.
[23] H. Lanig, W. Utz, P. Gmeiner, J. Med. Chem. 44 (2001) 1151–1157.
[24] A.K. Chakraborti, R. Thilagavathi, Bioorg. Med. Chem. 11 (2003)
3989–3996.
[25] M. Meyer, F. Chudziak, C. Schwanstecher, M. Schwanstecher,
U. Panten, Br. J. Pharmacol. 128 (1999) 27–34.
[26] S.A. Raptis, E. Hatziagelaki, G. Dimitriadis, K.E. Draeger, C. Pfeiffer,
A.E. Raptis, Exp. Clin. Endocrinol. Diabetes 107 (1999) 350–355.
[27] Prescrire Int. 7 (1998) 106–107.
[28] W. Kramer, G. Muller, F. Girbig, U. Gutjahr, S. Kowalewski, D. Hartz,
H.D. Summ, Biochim. Biophys. Acta 1191 (1994) 278–290.
[29] G. Muller, D. Hartz, J. Punter, R. Okonomopulos, W. Kramer, Bio-
chim. Biophys. Acta 1191 (1994) 267–277.
[30] K. Hastedt, U. Panten, Biochem. Pharmacol. 65 (2003) 599–602.
[31] S. Hu, S. Wang, B. Fanelli, P.A. Bell, B.E. Dunning, S. Geisse,
R. Schmitz, B.R. Boettcher, J. Pharmacol. Exp. Ther. 293 (2000)
444–452.
Comparative molecular field analysis was carried out with
the CoMFA unit of the molecular modelling suite of pro-
grams Sybyl (version 6.2). Input structures were based on the
crystal structure of glibenclamide [17] and were modelled as
described above. Gasteiger-Marsili charges were assigned
for CoMFA runs. Two different positioning (database and
rigid field fit) were performed, the former yielding a better
alignment. In this approach, all the compounds were aligned
by atom-by-atom fitting using the heavy atoms of the termi-
nal phenyl ring and the carbon atom of the carbonyl group of
the benzamide substructure. Cross-validated CoMFA runs
were performed by means of PLS (leave one out) regression
analysis in order to obtain the optimal number of principal
components to be used in the subsequent analyses (the opti-
mum number of components obtained from cross-validated
PLS analysis and q2–the cross-validated correlation coeffi-
cient are shown in Table 2). The number of principal compo-
nents thus determined was used in the non-cross-validated
CoMFA runs so as to obtain the highest correlation coeffi-
cient R2 and the lowest standard error (Table 2). The pKi of
the inhibition of [3H]-glibenclamide binding in rat cerebral
cortex [16] was used as the biological activity indicator
(Table 1). CoMFA was carried out with the default settings
except for 2.0 kcal/mol column filtering applied at cross-
validation and no-validation runs. CoMFA variable used: S,
steric fields; E, electrostatic fields; P, octanol-water partition
coefficient (LogP), calculated with ChemPlus.
Acknowledgements
[32] H. Weber, W. Aumuller, K. Muth, R. Weyer, Benzenesulfonyl ureas,
1976 US patent 3932503.
[33] H. Weber, W. Aumuller, R. Weyer, K. Muth, F.H. Schmidt, Benzene-
sulfonyl ureas and process for their manufacture, 1969 US patent
3426067.
This work was supported in part by The Australian Post-
graduate Awards (APA) and Monash Graduate Scholarship
(MGS) to DCMK.
[34] H. Weber, W. Aumuller, K. Muth, R. Weyer, R. Heerdt, E. Fauland,
A. Bander, W. Pfaff, F.H. Schmidt, H. Stork, Arzneim-Forsch. 19
(1969) 1346–1362.
References
[35] J. Buckingham (ed.), Dictionary of Organic Compounds, Chapman
and Hall, New York, 1982.
[36] B.S. Furniss, A.J. Hannaford, P.W.G. Smith, A.R. Tatchell, Vogel’s
Textbook of Practical Organic Chemistry, Longman Scientific &
Technical, London, 1989.
[1] M.J. Coghlan, W.A. Carroll, M. Gopalakrishnan, J. Med. Chem. 44
(2001) 1627–1653.
[2] M.L.J. Ashford, in: N.S. Cook (Ed.), Potassium Channels: Structure,
Classification, Function and Therapeutic Potential, Ellis Horwood,
Chichester, 1990, pp. 300–325.
[37] Hilton-Davis, US patent 4874894, 1989.
[38] I. Fabricius, GB patent 11885013, 1970.
[3] F.M. Gribble, F. Reimann, Diabetologia 46 (2003) 875–891.
[4] V. Kecskemeti, Z. Bagi, P. Pacher, I. Posa, E. Kocsis, M.Z. Koltai,
Curr. Med. Chem. 9 (2002) 53–71.
[5] M.V. Mikhailov, E.A. Mikhailova, S.J. Ashcroft, FEBS Lett. 499
(2001) 154–160.
[6] L. Luzi, G. Pozza, Acta Diabetol. 34 (1997) 239–244.
[7] W. Kramer, G. Muller, F. Girbig, U. Gutjahr, S. Kowalewski, D. Hartz,
H.D. Summ, Diabetes Res. Clin. Pract. 28 (Suppl) (1995) S67–S80.
[8] C.E. Schotborgh, A.A. Wilde, Cardiovasc. Res. 34 (1997) 73–80.
[9] A.A. Konstas, M. Dabrowski, C. Korbmacher, S.J. Tucker, J. Biol.
Chem. 277 (2002) 21346–21351.
[39] G.R. Brown, A.J. Foubister, J. Med. Chem. 27 (1984) 79–81.
[40] U. Burkert, N.L. Allinger, Molecular Mechanics, ACS, Washington,
DC, 1982.
[41] N.L. Allinger, X. Zhou, J. Bergsma, J. Mol. Struct. (Theochem) 312
(1994) 69–83.
[42] J. Kao, C. Eyermann, E. Southwick, D. Leister, J.Am. Chem. Soc. 107
(1985) 5324.
[43] D.L. Mattern, X. Chen, J. Org. Chem. 56 (1991) 5903–5907.
[44] J.B. Nicholas, R. Vance, E. Martin, B.J. Burke, A.J. Hopfinger, J.
Phys. Chem. 95 (1991) 9803–9811.