28. Siklos M, BenAissa M, Thatcher GRJ. Cysteine proteases as therapeutic targets: does selectivity
matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B. 2015;5(6): 506-519.
29. Andrews KT, Fisher G, Skinner-Adams TS. Drug repurposing and human parasitic protozoan diseases.
Int J Parasitol Drugs Drug Resist. 2014;4(2): 95-111.
30. Inc. CCG. Molecular Operating Environment (MOE), 2013.08 2015.
31. Asaad N, Bethel PA, Coulson MD, et al. Dipeptidyl nitrile inhibitors of Cathepsin L. Bioorganic &
Medicinal Chemistry Letters. 2009;19(15): 4280-4283.
32. Frizler M, Stirnberg M, Sisay MT, Gutschow M. Development of nitrile-based peptidic inhibitors of
cysteine cathepsins. Curr Top Med Chem. 2010;10(3): 294-322.
33. Schmitz J, Furtmann N, Ponert M, et al. Active Site Mapping of Human Cathepsin F with Dipeptide
Nitrile Inhibitors. ChemMedChem. 2015;10(8): 1365-1377.
34. Frizler M, Lohr F, Furtmann N, Klas J, Gutschow M. Structural optimization of azadipeptide nitriles
strongly increases association rates and allows the development of selective cathepsin inhibitors. J Med
Chem. 2011;54(1): 396-400.
35. Powers JC, Asgian JL, Ekici OD, James KE. Irreversible inhibitors of serine, cysteine, and threonine
proteases. Chem Rev. 2002;102(12): 4639-4750.
36. Vicik R, Busemann M, Baumann K, Schirmeister T. Inhibitors of cysteine proteases. Curr Top Med
Chem. 2006;6(4): 331-353.
37. Siklos M, BenAissa M, Thatcher GR. Cysteine proteases as therapeutic targets: does selectivity
matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B. 2015;5(6): 506-519.
38. Borisek J, Vizovisek M, Sosnowski P, et al. Development of N-(Functionalized benzoyl)-
homocycloleucyl-glycinonitriles as Potent Cathepsin K Inhibitors. Journal of Medicinal Chemistry.
2015;58(17): 6928-6937.
39. Hardegger LA, Kuhn B, Spinnler B, et al. Systematic investigation of halogen bonding in protein-
ligand interactions. Angew Chem Int Ed Engl. 2011;50(1): 314-318.
40. McGrath ME, Klaus JL, Barnes MG, Bromme D. Crystal structure of human cathepsin K complexed
with a potent inhibitor. Nat Struct Biol. 1997;4(2): 105-109.
41. Greenspan PD, Clark KL, Tommasi RA, et al. Identification of dipeptidyl nitriles as potent and
selective inhibitors of cathepsin B through structure-based drug design. Journal of Medicinal Chemistry.
2001;44(26): 4524-4534.
42. Bromme D, Bonneau P, Lachance P, Storer AC. Engineering the S2 Subsite Specificity of Human
Cathepsin-S to a Cathepsin-L-Like and Cathepsin-B-Like Specificity. J Cell Biochem. 1994: 152-152.
43. Black WC, Bayly CI, Davis DE, et al. Trifluoroethylamines as amide isosteres in inhibitors of cathepsin
K. Bioorganic & Medicinal Chemistry Letters. 2005;15(21): 4741-4744.
44. Gauthier JY, Chauret N, Cromlish W, et al. The discovery of odanacatib (MK-0822), a selective
inhibitor of cathepsin K. Bioorganic & Medicinal Chemistry Letters. 2008;18(3): 923-928.
45. O'Shea PD, Chen CY, Gauvreau D, et al. A Practical Enantioselective Synthesis of Odanacatib, a Potent
Cathepsin K Inhibitor, via Triflate Displacement of an alpha-Trifluoromethylbenzyl Triflate. J Org Chem.
2009;74(4): 1605-1610.
46. Truong VL, Gauthier JY, Boyd M, Roy B, Scheigetz J. Practical and efficient route to (S)-gamma-
fluoroleucine. Synlett. 2005(8): 1279-1280.
47. Humphrey G, Chung CK, Rivera NR, Belyk KM. Asymmetric synthesis for preparing fluoroleucine alkyl
esters. Google Patents; 2013.
48. Fanelli R, Martinez J, Cavelier F. Expedient Synthesis of Fmoc-(S)--Fluoroleucine and Late-Stage
Fluorination of Peptides. Synlett. 2016;27(9): 1403-1407.
49. Smith HJ, Simons C. Proteinase and peptidase inhibition : recent potential targets for drug development.
London ; New York: Taylor & Francis; 2002.
50. Bryant CM, Bunin BA, Kraynack EA, Patterson JW. N-cyanomethyl amides as protease inhibitors.
2001.
16