Organic Letters
Letter
Moorefield, C. N.; Wesdemiotis, C.; Cheng, S. Z. D.; Newkome, G. R.
J. Am. Chem. Soc. 2011, 133, 11450−11453.
(8) (a) Hiraoka, S.; Harano, K.; Shiro, M.; Shionoya, M. J. Am. Chem.
Soc. 2008, 130, 14368−14369. (b) Hiraoka, S.; Harano, K.; Nakamura,
T.; Shiro, M.; Shionoya, M. Angew. Chem., Int. Ed. 2009, 48, 7006−
7009. (c) Hiraoka, S.; Nakamura, T.; Shiro, M.; Shionoya, M. J. Am.
Chem. Soc. 2010, 132, 13223−13225.
ASSOCIATED CONTENT
* Supporting Information
Experimental details for the synthesis, spectral character-
izations, and additional data. This material is available free of
■
S
(9) (a) Shukla, R.; Lindeman, S. V.; Rathore, R. J. Am. Chem. Soc.
2006, 128, 5328−5329. (b) Shukla, R.; Lindeman, S. V.; Rathore, R.
Chem. Commun. 2007, 3717−3719. (c) Bhalla, V.; Vij, V.; Kumar, M.;
Sharma, P. R.; Kaur, T. Org. Lett. 2012, 14, 1012−1015. (d) Bhalla, V.;
Vij, V.; Tejpal, R.; Singh, G.; Kumar, M. Dalton Trans. 2013, 42,
4456−4463. (e) Maeda, H.; Shirai, T.; Uemura, S. Chem. Commun.
2013, 49, 5310−5312.
AUTHOR INFORMATION
Corresponding Authors
■
Notes
(10) (a) Lambert, C.; Noll, G. Chem.Eur. J. 2002, 8, 3467−3477.
The authors declare no competing financial interest.
̈
(b) Traber, B.; Wolff, J. J.; Rominger, F.; Oeser, T.; Gleiter, R.;
Goebel, M.; Wortmann, R. Chem.Eur. J. 2004, 10, 1227−1238.
ACKNOWLEDGMENTS
■
(c) Xiao, W.; Feng, X.; Ruffieux, P.; Groning, O.; Mullen, K.; Fasel, R.
̈
̈
This work was supported by JSPS Grants-in-Aid for Scientific
Research on Innovative Areas “Dynamical Ordering of
Biomolecular Systems for Creation of Integrated Functions”
(25102005), Yamada Science Foundation, and Tokuyama
Science Foundation. M. Terasaki (Nihon Waters K.K.) is
acknowledged for HRMS measurements.
J. Am. Chem. Soc. 2008, 130, 8910−8912. (d) Zeng, Z.; Guan, Z.; Xu,
Q.-H.; Wu, J. Chem.Eur. J. 2011, 17, 3837−3841. (e) Lambert, C.;
Ehbets, J.; Rausch, D.; Steeger, M. J. Org. Chem. 2012, 77, 6147−6154.
(f) Steeger, M.; Lambert, C. Chem.Eur. J. 2012, 18, 11937−11948.
(11) Feng, X.; Pisula, W.; Mullen, K. Pure. Appl. Chem. 2009, 81,
̈
2203−2224.
(12) Rathore, R.; Burns, C. L.; Guzei, I. A. J. Org. Chem. 2004, 69,
1524−1530.
REFERENCES
■
(13) Winkler, H. J. S.; Winkler, H. J. Am. Chem. Soc. 1966, 88, 964−
(1) (a) Wu, J.; Pisula, W.; Mullen, K. Chem. Rev. 2007, 107, 718−
747. (b) Chen, L.; Hernandez, Y.; Feng, X.; Mullen, K. Angew. Chem.,
Int. Ed. 2012, 51, 7640−7654.
̈
969.
̈
(14) (a) Bunnett, J. Acc. Chem. Res. 1972, 5, 139−147. (b) Schnurch,
̈
M.; Spina, M.; Khan, A. F.; Mihovilovic, M. D.; Stanetty, P. Chem. Soc.
Rev. 2007, 36, 1046−1057. (c) Schlosser, M. Angew. Chem., Int. Ed.
2005, 44, 376−393.
(2) (a) Hill, J. P.; Jin, W.; Kosaka, A.; Fukushima, T.; Ichihara, H.;
Shimomura, T.; Ito, K.; Hashizume, T.; Ishii, N.; Aida, T. Science 2004,
304, 1481−1483. (b) Yamamoto, Y.; Fukushima, T.; Suna, Y.; Ishii,
N.; Saeki, A.; Seki, S.; Tagawa, S.; Taniguchi, M.; Kawai, T.; Aida, T.
Science 2006, 314, 1761−1764. (c) Zhang, W.; Jin, W.; Fukushima, T.;
Saeki, A.; Aida, T. Science 2011, 334, 340−343.
(15) The similar situation of the solubility-controlled perlithiation
followed by the halogen dance was proposed on 2,6-dibromopyridine.
See: Cai, D.; Hughes, D. L.; Verhoeven, T. R. Tetrahedron Lett. 1996,
37, 2537−2540.
(3) (a) Feng, X. L.; Pisula, W.; Takase, M.; Enkelmann, V.; Mullen,
̈
(16) In addition, hexalithiation of exactly half of compound 1 is based
on the kinetics that the rate of the elimination reaction of t-BuBr with
t-BuLi is faster than the dissolution rate of compound 1. Otherwise,
more than half of compound 1 could be hexalithiated because the
reaction rate of Br/Li exchange between ArBr and t-BuLi is usually
faster than that of the subsequent elimination reaction. For example,
see: Waldmann, C.; Schober, O.; Haufe, G.; Kopka, K. Org. Lett. 2013,
15, 2954−2957.
K. Chem. Mater. 2008, 20, 2872−2874. (b) Feng, X. L.; Pisula, W.; Zhi,
L.; Takase, M.; Mullen, K. Angew. Chem., Int. Ed. 2008, 47, 1703−
̈
1706. (c) Feng, X. L.; Pisula, W.; Kudernac, T.; Wu, D.; Zhi, L.;
Feyter, S. D.; Mullen, K. J. Am. Chem. Soc. 2009, 131, 4439−4448.
̈
(4) Geng, Y.; Fechtenkotter, A.; Mullen, K. J. Mater. Chem. 2001, 11,
̈
̈
1634−1641.
(5) (a) Thomas, K. R. J.; Velusamy, M.; Lin, J. T.; Chuen, C. H.; Tao,
Y.-T. J. Mater. Chem. 2005, 15, 4453−4459. (b) Watanabe, S.; Kido, J.
Chem. Lett. 2007, 36, 590−591. (c) Li, Z.; Ye, S.; Liu, Y.; Yu, G.; Wu,
W.; Qin, J.; Li, Z. J. Phys. Chem. B 2010, 114, 9101−9108.
(17) See Supporting Information.
(18) (a) Lambert, C. Angew. Chem., Int. Ed. 2005, 44, 7337−7339.
(b) Sun, D.; Rosokha, S. V.; Kochi, J. K. Angew. Chem., Int. Ed. 2005,
44, 5133−5136. (c) Chebny, V. J.; Shukla, R.; Rathore, R. J. Phys.
Chem. A 2006, 110, 13003−13006. (d) Rosokha, S. V.; Neretin, I. S.;
Sun, D.; Kochi, J. K. J. Am. Chem. Soc. 2006, 128, 9394−9407.
(e) Shukla, R.; Lindeman, S. V.; Rathore, R. Org. Lett. 2007, 9, 1291−
1294. (f) Rathore, R.; Burns, C. L.; Abdelwahed, S. A. Org. Lett. 2004,
6, 1689−1692. (g) Mandal, S.; Parida, K. N.; Samanta, S.; Moorthy, J.
N. J. Org. Chem. 2011, 76, 7406−7414.
(6) (a) Cho, H. S.; Rhee, H.; Song, J. K.; Min, C.-K.; Takase, M.;
Aratani, N.; Cho, S.; Osuka, A.; Joo, T.; Kim, D. J. Am. Chem. Soc.
2003, 125, 5849−5860. (b) Kodis, G.; Terazono, Y.; Liddell, P. A.;
́
Andreasson, J.; Garg, V.; Hambourger, M.; Moore, T. A.; Moore, A. L.;
Gust, D. J. Am. Chem. Soc. 2006, 128, 1818−1827. (c) Terazono, Y.;
Kodis, G.; Liddell, P. A.; Garg, V.; Moore, T. A.; Moore, A. L.; Gust,
D. J. Phys. Chem. B 2009, 113, 7147−7155. (d) Terazono, Y.; Kodis,
G.; Bhushan, K.; Zaks, J.; Madden, C.; Moore, A. L.; Moore, T. A.;
Fleming, G. R.; Gust, D. J. Am. Chem. Soc. 2011, 133, 2916−2922.
(7) (a) Hiraoka, S.; Harano, K.; Shiro, M.; Ozawa, Y.; Yasuda, N.;
Toriumi, K.; Shionoya, M. Angew. Chem., Int. Ed. 2006, 45, 6488−
6491. (b) Hiraoka, S.; Goda, M.; Shionoya, M. J. Am. Chem. Soc. 2009,
(19) Gorecka-Kobylinska, J.; Schlosser, M. J. Org. Chem. 2009, 74,
222−229.
(20) The substituent effects on the stability of aryllithiums
investigated by Schlosser et al. are limited to the electron-withdrawing
substituents. However, the good correlation has been confirmed
between the thermodynamic substituent effects on aryllithium and
kinetic substituent effects on the almost irreversible Mg/Br exchange
reaction with i-PrMgCl·LiCl reported by Mayr et al. Therefore, the
thermodynamic substituent effects can be qualitatively deduced from
the kinetic substituent effects reported by Mayr et al., which contain a
large variety of substituents. (a) Shi, L.; Chu, Y.; Knochel, P.; Mayr, H.
Angew. Chem., Int. Ed. 2008, 47, 202−204. (b) Shi, L.; Chu, Y.;
Knochel, P.; Mayr, H. J. Org. Chem. 2009, 74, 2760−2764.
(21) Rathore, R.; Burns, C. L. Org. Synth. 2005, 82, 30.
131, 4592−4593. (c) Hoffmann, M.; Karnbratt, J.; Chang, M.-H.;
̈
Herz, L. M.; Albinsson, B.; Anderson, H. L. Angew. Chem., Int. Ed.
2008, 47, 4993−4996. (d) O’Sullivan, M. C.; Sprafke, J. K.; Kondratuk,
D. V.; Rinfray, C.; Claridge, T. D. W.; Saywell, A.; Blunt, M. O.;
O’Shea, J. N.; Beton, P. H.; Malfois, M.; Anderson, H. L. Nature 2011,
469, 72−75. (e) Zhao, Z.; Zheng, Y.-R.; Wang, M.; Pollock, J. B.;
Stang, P. J. Inorg. Chem. 2010, 49, 8653−8655. (f) Zheng, Y. R.; Zhao,
Z.; Kim, H.; Wang, M.; Ghosh, K.; Pollock, J. B.; Chi, K.-W.; Stang, P.
J. Inorg. Chem. 2010, 49, 10238−10240. (g) Jia, W.-L.; Wang, R.-Y.;
Song, D.; Ball, S. J.; McLean, A. B.; Wang, S. Chem.Eur. J. 2005, 11,
832−842. (h) Wang, J.-L.; Li, X.; Lu, X.; Hsieh, I.-F.; Cao, Y.;
D
dx.doi.org/10.1021/ol500041j | Org. Lett. XXXX, XXX, XXX−XXX