Heck Arylation of Olefins with Aryl Chlorides
A R T I C L E S
Scheme 3. Resonance Structures of the Cationic Pd(II)
High regioselectivity has also been observed by changing the
reaction medium. In the past few years, we have shown that R
regiocontrol in the coupling of aryl bromides with electron-
rich olefins can be readily achieved by using imidazolium ionic
liquids as solvents.15,27 Under these conditions, we believe that
the formation of the key cationic PdII species in pathway B is
favored, thus enhancing selectivity for the R product. Ionic
liquids are entirely composed of ions;28 hence, electrostatic
interactions would favor the generation of a PdII-olefin cation
and a halide anion (Scheme 2, pathway B). Consistent with this
view, Amatore and Jutand have shown that a high ionic strength
favors R arylation.17 This method, alongside those reported by
Hallberg and Larhed,29,30 Calo´,31 and Alper,32 enables a highly
regioselective Heck reaction without the use of halide scavengers
or triflates.33,34 However, none of these methods are known to
allow for efficient and selective R arylation of olefins with aryl
chlorides.
We recently reported that by using the Pd-dppp catalyst and
a hydrogen bond donor additive, such as [HNEt3][BF4], regi-
oselective R arylation of olefins with aryl bromides can be
effected in a common solvent, such as DMF.35 The hydrogen
bond donor is essential, probably promoting the dissociation of
bromide from [Pd(dppp)(Ph)Br] and thus the formation of the
cationic Pd-olefin intermediate in Scheme 2. We were delighted
to find that under these conditions, the benchmark electron-
rich olefin n-butyl vinyl ether can be R arylated, for the first
time, with aryl chlorides (Scheme 4a).35 A similar reaction of
aryl chlorides was also demonstrated in neat water by Larhed
and co-workers36 using an electron-rich alkyl diphosphine, 1,3-
bis(diisopropylphosphino)propane (dippp) (Scheme 4b).4g How-
ever, these two catalytic systems only work for a few activated
aryl chlorides, i.e., those bearing electon-withdrawing substit-
uents. For those that are unactivated, i.e., electron-neutral or
-rich, the catalysts were ineffective. The inefficiency of dppp
may be a result of its inability to promote the oxidiative addition
of ArCl to Pd(0), while that of dippp probably stems from the
formation of catalytically inactive [Pd(dippp)Cl2].4g,36 In addi-
Intermediate
exclusively through only one of the two olefinic carbons, the
C4 atom, supporting the representations in Scheme 3.20
Extensive studies have been carried out of how to control the
regioselectivity and promote R arylation.10,15,16,21-24 The work of
Hallberg and Larhed,21 Cabri,16,22 and other researchers23 revealed
that high R/ꢀ regioselectivity could be obtained under Pd-dppp
(dppp )1,3-bis(diphenylphosphino)propane) catalysis by employ-
ing aryl triflates or by adding stoichiometric silver or thallium salts
when aryl iodides and bromides are chosen. Silver and thallium
salts act as halide scavengers, thereby promoting pathway B.
Similarly, the lability of the Pd-OTf bond facilitates the formation
of the cationic PdII-olefin species, thus leading to regioselective
production of the branched product.25 It is also apparent from
Scheme 2 that a monodentate phosphine ligand would make
pathway A more likely, whereas a bidentante ligand such as dppp
would promote pathway B. These tactics have also been widely
exploited in effecting enantioselective Heck reactions, where the
ionic pathway is generally believed to give high enantio-
selectivities.1h,26
(19) For DFT studies, see: (a) Deeth, R. J.; Smith, A.; Brown, J. M. J. Am.
Chem. Soc. 2004, 126, 7144. (b) von Schenck, H.; Åkermark, B.;
Svensson, M. J. Am. Chem. Soc. 2003, 125, 3503. (c) Hii, K. K.;
Claridge, T. D. W.; Brown, J. M.; Smith, A.; Deeth, R. J. HelV. Chim.
Acta 2001, 84, 3043. (d) Deeth, R. J.; Smith, A.; Hii, K. K.; Brown,
J. M. Tetrahedron Lett. 1998, 39, 3229. (e) Albert, K.; Gisdakis, P.;
Rosch, N. Organometallics 1998, 17, 1608.
(20) Henriksen, S. T.; Norrby, P.-O.; Kaukoranta, P.; Andersson, P. G.
J. Am. Chem. Soc. 2008, 130, 10414.
(21) (a) Arefalk, A.; Larhed, M.; Hallberg, A. J. Org. Chem. 2005, 70,
938. (b) Vallin, K. S. A.; Zhang, Q.; Larhed, M.; Curran, D. P.;
Hallberg, A. J. Org. Chem. 2003, 68, 6639. (c) Nilsson, P.; Larhed,
M.; Hallberg, A. J. Am. Chem. Soc. 2003, 125, 3430. (d) Bengston,
A.; Larhed, M.; Hallberg, A. J. Org. Chem. 2002, 67, 5854. (e) Nilsson,
P.; Larhed, M.; Hallberg, A. J. Am. Chem. Soc. 2001, 123, 8217. (f)
Olofsson, K.; Sahlin, H.; Larhed, M.; Hallberg, A. J. Org. Chem. 2001,
66, 544. (g) Vallin, K. S. A.; Larhed, M.; Johansson, K.; Hallberg, A.
J. Org. Chem. 2000, 65, 4537. (h) Olofsson, K.; Larhed, M.; Hallberg,
A. J. Org. Chem. 2000, 65, 7235. (i) Olofsson, K.; Larhed, M.;
Hallberg, A. J. Org. Chem. 1998, 63, 5076. (j) Larhed, M.; Hallberg,
A. J. Org. Chem. 1997, 62, 7858. (k) Larhed, M.; Hallberg, A. J.
Org. Chem. 1996, 61, 9582.
(27) (a) Mo, J.; Xu, L.; Ruan, J.; Liu, S.; Xiao, J. Chem. Commun. 2006,
3591. (b) Hyder, Z.; Mo, J.; Xiao, J. AdV. Synth. Catal. 2006, 348,
1699. (c) Xu, L.; Chen, W.; Ross, J.; Xiao, J. Org. Lett. 2001, 3, 295.
For a recent review, see: (d) Liu, S.; Xiao, J. J. Mol. Catal. A: Chem.
2007, 270, 1.
(28) For reviews, see: (a) Jain, N.; Kumar, A.; Chauhan, S.; Chauhan,
S. M. S. Tetrahedron 2005, 61, 1015. (b) Welton, T. Coord. Chem.
ReV. 2004, 248, 2459. (c) Wilkes, J. S. J. Mol. Catal. A: Chem. 2004,
214, 11. (d) Cole-Hamilton, D. J. Science 2003, 299, 1702. (e) Dupont,
J.; de Souza, R. F.; Suarez, P. A. Z. Chem. ReV. 2002, 102, 3367. (f)
Olivier-Bourbigou, H.; Magna, L. J. Mol. Catal. A: Chem. 2002, 182-
183, 419. (g) Zhao, D.; Wu, M.; Kou, Y.; Min, E. Catal. Today 2002,
74, 157. (h) Tzschucke, C. C.; Markert, C.; Bannwarth, W.; Roller,
S.; Hebel, A.; Haag, R. Angew. Chem., Int. Ed. 2002, 41, 3964. (i)
Zhao, H.; Malhotra, S. V. Aldrichim. Acta 2002, 35, 75. (j) Sheldon,
R. Chem. Commun. 2001, 2399. (k) Gordon, C. M. Appl. Catal., A
2001, 222, 101. (l) Wasserscheid, P.; Keim, W. Angew. Chem., Int.
Ed. 2000, 39, 3772.
(22) (a) Cabri, W.; Candiani, I.; Bedeschi, A.; Santi, R. J. Org. Chem.
1993, 58, 7421. (b) Cabri, W.; Candiani, I.; Bedeschi, A.; Penco, S.;
Santi, R. J. Org. Chem. 1992, 57, 1481.
(23) (a) Hansen, A. L.; Skrydstrup, T. Org. Lett. 2005, 7, 5585. (b) Hansen,
A. L.; Skrydstrup, T. J. Org. Chem. 2005, 70, 5997. (c) Tu, T.; Hou,
X.-L.; Dai, L.-X. Org. Lett. 2003, 5, 3651. (d) Barcia, J. C.; Cruces,
J.; Este´vez, J. C.; Este´vez, R. J.; Castedo, L. Tetrahedron Lett. 2002,
43, 5141. (e) Ludwig, M.; Stro¨mberg, S.; Svensson, M.; Åkermark,
B. Organometallics 1999, 18, 970.
(24) For other examples of regioselective Heck reaction of electron-rich
olefins, see: (a) Calo`, V.; Nacci, A.; Monopoli, A.; Ferola, V. J. Org.
Chem. 2007, 72, 2596. (b) Fall, Y.; Berthiol, F.; Doucet, H.; Santelli,
M. Synthesis 2007, 1683. (c) Calo`, V.; Nacci, A.; Monopoli, A. Eur.
J. Org. Chem. 2006, 3791. (d) Svennebring, A.; Nilsson, P.; Larhed,
M. J. Org. Chem. 2004, 69, 3345. (e) Bouquillon, S.; Ganchegui, B.;
Estrine, B.; He´nin, F.; Muzart, J. J. Organomet. Chem. 2001, 634,
153.
(29) Vallin, K. S. A.; Emilsson, P.; Larhed, M.; Hallberg, A. J. Org. Chem.
2002, 67, 6243.
(30) The arylation can also be performed in a DMF-water mixture: Vallin,
K. S. A.; Larhed, M.; Hallberg, A. J. Org. Chem. 2001, 66, 4340.
This paper also shows that the regioselective Heck reaction is feasible
by using a mixture of DMF and MeOH.
(31) Calo´, V.; Nacci, A.; Monopoli, A.; Detomaso, A.; Iliade, P. Organo-
metallics 2003, 22, 4193.
(25) (a) Jutand, A. Eur. J. Inorg. Chem. 2003, 2017. (b) Brown, J. M.;
Hii, K. K. Angew. Chem., Int. Ed. 1996, 35, 657. (c) Jutand, A.;
Mosleh, A. Organometallics 1995, 14, 1810.
(32) Park, S. B.; Alper, H. Chem. Commun. 2004, 1306.
(33) For ꢀ arylation in ionic liquid, see ref 24c and references therein.
(34) Opposite regioselectivities have been observed when the reaction is
run in poly(ethylene glycol): Chandrasekhar, S.; Narsihmulu, Ch.;
Sultana, S. S.; Reddy, N. R. Org. Lett. 2002, 4, 4399.
(26) Intramolecular coordination of an olefin may facilitate the dissociation
of a halide anion from palladium to form the cationic palladium
intermediate (Scheme 2): Ashimori, A.; Bachand, B.; Calter, M. A.;
Govek, S. P.; Overman, L. E.; Poon, D. J. J. Am. Chem. Soc. 1998,
120, 6488.
(35) Mo, J.; Xiao, J. Angew. Chem., Int. Ed. 2006, 45, 4152.
(36) Arvela, R. K.; Pasquini, S.; Larhed, M. J. Org. Chem. 2007, 72, 6390.
9
J. AM. CHEM. SOC. VOL. 132, NO. 46, 2010 16691