4236
J . Org. Chem. 1997, 62, 4236-4239
Alk yla tion P r od u cts of a Ca lix[8]a r en e Tr ia n ion . Effect of Ch a r ge
Red istr ibu tion in In ter m ed ia tes
Placido Neri,* Grazia M. L. Consoli, Francesca Cunsolo, Concetta Rocco, and Mario Piattelli
Istituto per lo Studio delle Sostanze Naturali di Interesse Alimentare e Chimico-Farmaceutico, C.N.R.,
Via del Santuario 110, I-95028 Valverde (CT), Italy
Received J anuary 3, 1997X
The behavior of a well-defined calix[8]arene trianion under alkylation conditions was investigated
by reacting the tetraethylammonium salt of p-tert-butylcalix[8]arene trianion with p-methylbenzyl
bromide. Chromatography of the reaction mixture afforded the following derivatives in order of
decreasing yields: 1,3,5,7-tetrakis-, 1,3-bis-, 1,3,5-tris-, 1,2,4-tris-, and mono(p-methylbenzyl)-p-
tert-butylcalix[8]arene, besides trace amounts of 1,4- and 1,5-disubstituted compounds. Comparable
results were obtained using p-tert-butylbenzyl bromide. The observed regioselectivity has been
explained by assuming that after each alkylation step the left negative charge is redistributed, by
exchange equilibria, over the remaining phenolic groups with preferential localization at those
positions where contiguous H-bond stabilization is possible and the electrostatic repulsion is
minimized. The occurrence of protonation/deprotonation equilibria allows the formation of 1,3,5,7-
tetrasubstituted calix[8]arene.
In tr od u ction
nature of the base has a strong effect in the product
distribution in the reactions leading to both calix[4]-
crown9 and calix[8]crown ethers.10
The behavior of calixarenes1 in the base-promoted
alkylation at the phenolic hydroxyls is a crucial aspect
of their chemistry, whose understanding is a premise for
better control of the reaction.2 In fact, it has been largely
demonstrated that the influence of the nature of the base
(cation identity and strength) is of paramount importance
in determining the stereo- and regiochemical outcome of
the reaction.3 Thus, calix[4]arenes often give preferen-
tially the tetrasubstituted cone or partial cone atropiso-
mers in the presence of NaH or, respectively, Cs2CO3,4
while in their partial alkylation the use of K2CO3 affords
selectively 1,3-disubstituted derivatives5 and that of NaH
the 1,2-regioisomers.6 Moreover, in the arylmethylation
of calix[6]arenes NaH leads to the preferential formation
of 1,2,4,5-tetrasubstituted and KH that of 1,4-disubsti-
tuted derivatives,2,7 while 1,2,3- or 1,3,5-trisubstitution
is observed with either K2CO3 or CsF.8 Analogously, the
In order to rationalize these data the factor to be
considered first is the nature of the base, since in the
presence of weak or strong bases monoanions or, respec-
tively, polyanions are preferentially produced, thus driv-
ing the reaction through diverse pathways with the
formation of variously substituted derivatives.3-6 Thus,
it is commonly agreed that, in the presence of CsF or K2-
CO3, calix[n]arenes originate monoanions3,5c which evolve
mainly in accordance to the so-called alternate alkylation
route.11 Differently, in the presence of strong bases
(hydroxides or hydrides) polyanions are usually formed12,13
whose evolution is not yet fully understood.2,4d,6,14 In
many instances even the level of deprotonation is unclear,
making immaterial any further argumentation.
In the case of calix[8]arenes we have demonstrated
that alkylation in the presence of weak bases is mainly
driven by the preferential formation of monoanions
* To whom correspondence should be addressed. Phone +39-95-
7212136; fax +39-95-7212141; e-mail neri@issn.ct.cnr.it.
X Abstract published in Advance ACS Abstracts, May 15, 1997.
(1) Gutsche, C. D. Calixarenes; Royal Society of Chemistry: Cam-
bridge, 1989. Calixarenes: A Versatile Class of Macrocyclic Compounds;
Vicens, J ., Bo¨hmer, V., Eds.; Kluwer: Dordrecht, 1991.
(2) Kanamathareddy, S.; Gutsche, C. D. J . Org. Chem. 1992, 57,
3160.
(8) Casnati, A.; Minari, P.; Pochini, A.; Ungaro, R. J . Chem. Soc.,
Chem. Commun. 1991, 1413. Moran, J . K.; Roundhill D. M. Inorg.
Chem. 1992, 31, 4213. J anssen, R. G.; Verboom, W.; Reinhoudt, D. N.;
Casnati, A.; Freriks, M.; Pochini, A.; Ugozzoli, F.; Ungaro, R.; Nieto,
P. M.; Carramolino, M.; Cuevas, F.; Prados, P.; de Mendoza, J .
Synthesis 1993, 380. Neri, P.; Rocco, C.; Consoli, G. M. L.; Piattelli,
M. J . Org. Chem. 1993, 58, 6535. Neri, P.; Consoli, G. M. L.; Cunsolo,
F.; Piattelli, M. Tetrahedron Lett. 1994, 35, 2795. Moran, J . K.;
Georgiev, E. M.; Yordanov, A. T.; Mague, J . T.; Roundhill D. M. J .
Org. Chem. 1994, 59, 5990.
(9) Yamamoto, H.; Sakaki, T.; Shinkai, S. Chem. Lett. 1994, 469.
(10) Geraci, C.; Piattelli, M.; Neri, P. Tetrahedron Lett. 1996, 37,
3899.
(11) Neri, P.; Geraci C.; Piattelli, M. J . Org. Chem. 1995, 60, 4126.
(12) Gutsche, C. D.; Iqbal, M.; Nam, K. C.; See, K. A.; Alam, I. Pure
Appl. Chem. 1988, 60, 483. Gutsche, C. D.; Alam, I.; Iqbal, M.;
Mangiafico, T.; Nam, K. C.; Rogers, J .; See, K. A. J . Inclusion Phenom.
1989, 7, 61.
(13) (a) Harrowfield, J . M.; Ogden, M. I.; Richmond, W. R.; Skelton,
B. W.; White, A. H. J . Chem. Soc., Perkin Trans. 2 1993, 2183. (b)
Danil de Namor, A. F.; Garrido Pardo, M. T.; Pacheco Tanaka, D. A.;
Sueros Velarde, F. J .; Ca´rdenas Garc´ıa, J . D.; Cabaleiro, M. C.; Al-
Rawi, J . M. A. J . Chem. Soc., Faraday Trans. 1993, 89, 2727. (c)
Tatezaki, T.; Hayashi, K.; Yoshida, I.; Sagara, F.; Ishii, D.; Ueno, K.;
Shinkai, S. Abstracts of 2nd Workshop on Calixarenes and Related
Compounds, Kurume (J apan), 2-4 J une 1993, PS/A-30. (d) Harrow-
field, J . M.; Richmond, W. R.; Sobolev, A. N. J . Inclusion Phenom. 1994,
19, 257.
(3) Shinkai, S. Tetrahedron 1993, 49, 8933. V. Bo¨hmer, Angew.
Chem., Int Ed. Engl. 1995, 34, 713.
(4) (a) Iwamoto, K.; Araki, K.; Shinkai, S. J . Org. Chem. 1991, 56,
4955. (b) Iwamoto, K.; Araki, K.; Shinkai, S. Tetrahedron 1991, 47,
4325. (c) Verboom, W.; Datta, S.; Asfari, Z.; Harkema, S.; Reinhoudt,
D. N. J . Org. Chem. 1992, 57, 5394. (d) Pappalardo, S.; Giunta, L.;
Foti, M.; Ferguson, G.; Gallagher, J . F.; Kaitner, B. J . Org. Chem. 1992,
57, 2611.
(5) (a) Gutsche, C. D.; Dhawan, B.; Levine, J . A.; No, K. H.; Bauer,
L. J . Tetrahedron 1983, 39, 409. (b) Dijkstra, P. J .; Brunink, J . A. J .;
Bugge, K.-E.; Reinhoudt, D. N.; Harkema, S.; Ungaro, R.; Ugozzoli,
F.; Ghidini, E. J . Am. Chem. Soc. 1989, 111, 7567. (c) van Loon, J .-D.;
Arduini, A.; Coppi, L.; Verboom, W.; Pochini, A.; Ungaro, R.; Harkema,
S.; Reinhoudt, D. N. J . Org. Chem. 1990, 55, 5639. (d) Collins, E. M.;
McKervey, M. A.; Madigan, E.; Moran, M. B.; Owens, M.; Ferguson,
G.; Harris, S. J . J . Chem. Soc., Perkin Trans. 1 1991, 3137.
(6) (a) Bottino, F.; Giunta, L.; Pappalardo, S. J . Org. Chem. 1989,
54, 5407. (b) Groenen, L. C.; Rue¨l, B. H. M.; Casnati, A.; Timmerman,
P.; Verboom, W.; Harkema, S.; Pochini, A.; Ungaro, R.; Reinhoudt, D.
N. Tetrahedron Lett. 1991, 32, 2675.
(7) Rogers, J . S.; Gutsche, C. D. J . Org. Chem. 1992, 57, 3152. Neri,
P.; Foti, M.; Ferguson, G.; Gallagher, J . F.; Kaitner, B.; Pons, M.;
Molins, M. A.; Giunta, L.; Pappalardo, S. J . Am. Chem. Soc. 1992, 114,
7814. Neri, P.; Pappalardo, S. J . Org. Chem. 1993, 58, 1048.
(14) Araki, K.; Iwamoto, K.; Shigematsu, S.; Shinkai, S. Chem. Lett.
1992, 1095.
S0022-3263(97)00029-7 CCC: $14.00 © 1997 American Chemical Society