Photodissociation of Chloroiodobenzenes
J. Phys. Chem. A, Vol. 108, No. 39, 2004 7953
two indirect) for dissociation are available, for the C-Cl bond
scission only two indirect paths are possible. The absence of
the direct excitation pathway in the latter results in a low yield
of Cl*. Among the three isomers of chloroiodobenzene, the ortho
compound produces maximum amounts of Cl* and I*, indicating
stronger coupling between various photodissociation pathways
in the exit channel. The coupling is, perhaps, aided by through
space induced dipole-induced dipole and/or quadrupole-quad-
rupole interactions between the two halogen atoms. A quantita-
tive dynamics calculation using accurate potential energy
surfaces is necessary for developing a more quantitative
understanding of the ultraviolet dissociation of mixeddihalo
benzenes.
Acknowledgment. We thank Prof. A. G. Menon for helping
us with the design of the REMPI detector. The research
described here has been funded generously by the Department
of Atomic Energy, Government of India.
References and Notes
(1) Vogt, R.; Sander, R.; Glasow, R. V.; Crutzen, P. J. J. Atmos. Chem.
1999, 32, 375.
(2) Dubtsov, S. N.; Skubnevskaya, G. I.; Kutzenogii, K. P. J. Aerosol
Sci. 1991, 23, 181.
(3) Dzvonik, M.; Yang, S.; Bersohn, R. J. Chem. Phys. 1974, 61, 4408.
(4) Kawasaki, M.; Lee, S. J.; Bersohn, R. J. Chem. Phys. 1977, 66,
2647.
Figure 3. Schematic potential energy diagram describing the mech-
anism of the C-Cl bond dissociation. IVR is intramolecular vibrational
relaxation, and IC, internal conversion. Under Cs geometry, 9A′, 10A′,
and 11A′ are the (σ*(C-Cl) r n(Cl)) transitions.
excitation is not available for the Cl/Cl* production. However,
the two indirect pathways as applicable to the C-I bond
dissociation are accessible. The Cl* atoms are then produced
by a curve crossing mechanism from the initially excited S1/S2
r S0 state (s) via the dissociative state(s). Observation of a
low φ*(Cl) indicates that this curve crossing must be hindered.
Since the initially prepared excited state is low in energy
compared to the σ*(C-Cl) r n(Cl) states, the intersystem curve
crossing must be taking place at a much larger C-Cl bond
distance allowing the molecules to spend a long time in the
exit channel and dissociate by forming Cl atoms in the ground
spin-orbit state. This has been shown in a schematic potential
energy diagram in Figure 3. In this diagram, a molecule excited
to the S2 state first undergoes intramolecular vibrational
relaxation (IVR) to lower vibrational energy levels of the excited
state. A fraction of the molecules then crosses over to the
dissociative states to produce both Cl* and Cl products. A small
fraction of the molecules can also undergo fast internal
conversion to the high vibrational levels of the S0 state which
will eventually dissociate and produce ground-state Cl atom.
Also in this case, the ortho effect on φ*(Cl) is much more
prominent. The variation of φ*(Cl) as a function of wavelength
has to do with the extent to which the various initial excitation
carry the total transition strength and how the final repulsive
states are placed with respect to the initial excited states. In
other words, the variation reflects the actual dynamics of the
dissociation from the excited-state potential energy surfaces.
(5) Freedman, A.; Yang, S. C.; Kawasaki, M.; Bersohn, R. J. Chem.
Phys. 1980, 72, 1028.
(6) Freitas, J. E.; Hwang, H. J.; El-Sayed, M. A. J. Phys. Chem. 1993,
97, 12481.
(7) Cheng. P. Y.; Zhong, D.; Zewail, A. H. Chem. Phys. Lett. 1995,
237, 399.
(8) Griffiths, J. A.; Jung, K. W.; El-Sayed, M. A. J. Phys. Chem. 1996,
100, 7989.
(9) Unny, S.; Du, Y.; Zhu, L.; Truhins, K.; Gordon, R. J.; Sugita, A.;
Kawasaki, M.; Matsumi, Y.; Delmdahl, R.; Parker, D. H.; Berces, A. J.
Phys. Chem. A 2001, 105, 2270.
(10) Kavita, K.; Das, P. K. J. Chem. Phys. 2002, 117, 2038.
(11) Ichimura, T.; Mori, Y.; Shinohara, H.; Nishi, N. Chem. Phys. Lett.
1985, 122, 51.
(12) Ichimura, T.; Mori, Y.; Shinohara, H.; Nishi, N. Chem. Phys. Lett.
1985, 122, 55.
(13) Satyapal, S.; Tasaki, S.; Bersohn, R. Chem. Phys. Lett. 1993, 203,
349.
(14) Ichimura, T.; Mori, Y.; Shinohara, H.; Nishi, N. Chem. Phys. 1994,
189, 117.
(15) Wang, G.; Zhu, R.; Zhang, H.; Han, K.-L.; He, G.-Z.; Lou, N.-Q.
Chem. Phys. Lett. 1998, 288, 429.
(16) Doering, J. P. J. Chem. Phys. 1977, 67, 4065.
(17) Frueholz, R. P.; Flicker, W. M.; Mosher, O. A.; Kupperman, A. J.
Chem. Phys. 1979, 70, 3057.
(18) Trudell, B. C.; Price, S. J. W. Can. J. Chem. 1979, 57, 2256.
(19) Ichimura, T.; Mori, Y.; Shinohara, H.; Nishi, N. J. Chem. Phys.
1997, 107, 835.
(20) Zhu, R.-S.; Zhang, H.; Wang, G.-J.; Gu, X.-B.; Han, K.-L.; He,
G.-Z.; Lou, N.-Q. Chem. Phys. 1999, 248, 285.
(21) Gedanken, A.; Robin, M. B.; Yafet, Y. J. Chem. Phys. 1982, 76,
4798.
(22) Eppink, A. T. J. B.; Parker, D. H. J. Chem. Phys. 1998, 109, 4758.
(23) Arepalli, S.; Presser, N.; Robie, D.; Gordon, R. J. Chem. Phys.
Lett. 1985, 118, 88.
(24) Liyanage, R.; Yang, Y.; Hashimoto, S.; Gordon, R. J.; Field, R.
W. J. Chem. Phys. 1995, 103, 6811.
4. Concluding Remarks
(25) Senapati, D.; Kavita, K.; Das, P. K. J. Phys. Chem. A 2002, 106,
8479.
From I* and Cl* quantum yield measurements in the
photolysis of o-, m-, and p-chloroiodobenzenes in the ultraviolet,
we have shown, in this paper, that both chlorine and iodine
atoms are produced in their spin-orbit excited as well as ground
states. The dynamics of spin-orbit excited halogen atom
production is very complex and depends on (i) the electronic
nature of the initially prepared state, (ii) the intersystem crossing,
and (iii) the exit channel dynamics. While, in the case of the
C-I bond rupture, three competitive pathways (one direct and
(26) Hwang, H. J.; El-Sayed, M. A. J. Phys. Chem. 1991, 95, 8044.
(27) Matsumi, Y.; Tonokura, K.; Kawasaki, M.; Inoue, G.; Satyapal,
S.; Bersohn, R. J. Chem. Phys. 1991, 94, 2669.
(28) Regan, P. M.; Langford, S. R.; Ascenzi, D.; Cook, P. A.; Orr-
Ewing, A. J.; Ashfold, M. N. R. Phys. Chem. Chem. Phys. 1999, 1, 3247.
(29) Gedanken, A.; Rowe, M. D. Chem. Phys. Lett. 1975, 34, 39.
(30) Phillips, D. L. Prog. React. Kinet. Mech. 1999, 24, 223 and
references therein.
(31) Kavita, K.; Das, P. K. J. Chem. Phys. 2000, 112, 8426.
(32) Bondi, A. J. Phys. Chem. 1964, 68, 441.