Journal of Medicinal Chemistry p. 3983 - 3994 (1995)
Update date:2022-08-03
Topics:
Vigroux, Alain
Bergon, Michel
Zedde, Chantal
N-(Substituted 2-hydroxyphenyl)- and N-(substituted 2-hydroxypropyl)carbamates based on masked active benzoxazolones (model A) and oxazolidinones (model B), respectively, were synthesized and evaluated as potential drug delivery systems.A series of alkyl and aryl N-(5-chloro-2-hydroxyphenyl)carbamates 1 related to model A was prepared.These are open drugs of the skeletal muscle relaxant chlorzoxazone.The corresponding 4-acetamidophenyl ester named chloracetamol is a mutual prodrug of chloroxazone and acetaminophen.Chlorzacetamol and two other mutual prodrugs of active bezoxazolones and acetaminophen were obtained in a two-step process via condensation of 4-acetamidophenyl 1,2,2,2-tetrachloroethyl carbonate with the appropiate anilines.Based on model B, two mutual prodrugs of acetaminophen and active oxazolidinones (metaxalone and mephenoxalone) were similarly obtained using the appropiate amines.All the carbamate prodrugs prepared were found to release the parent drugs in aqueous (pH 6-11) and plasma (pH 7.4) media.The detailed mechanistic study of prodrugs 1 carried out in aqueous medium at 37 deg C shows a change in the Broensted-type relationship log t1/2 vs pKa of the leaving groups ROH: log t1/2 = 0.46pKa - 3.55 for aryl and trihalogenoethyl esters and log t1/2 = 1.46pKa - 16.03 for alkyl esters.This change is consistent with a cyclization mechanism involving a change in the rate-limiting step from formation of a cyclic tetrahedral intermediate (step k1) to departure of the leaving group ROH (step k2) when the leaving group ability decreases.This mechanism occurs for all the prodrugs related to model A.Regeneration of the parent drugs from mutual prodrugs related to model B takes place by means of a rate-limiting elimination-addition reaction (E1cB mechanism).This affords acetaminophen and the corresponding 2-hydroxypropyl isocyanate intermediates which cyclize at any pH to the corresponding oxazolidinone drugs.As opposed to model A, the rates of hydrolysis of mutual prodrugs of model B clearly exhibit a catalytic role of the plasma.It is concluded from the plasma studies that the carbamate substrates can be enzymatically transformed into potent electrophiles, i.e., isocyanates.In the case of the present study, the prodrugs are 2-hydroxycarbamates for which the propinquity of the hydroxyl residue and the isocyanate group enforces a cyclization reaction.This mechanistic particularity precludes their potential toxicity in terms of potent electrophiles capable of modifying critical macromolecules.
View MoreSHANGHAI T&W PHARMACEUTICAL CO., LTD.
website:http://www.trustwe.com
Contact:+86-21-61551611
Address:601, No. 1, 2277 Nong, Zu Chongzhi Road, Zhangjiang Hightech. Park, Pudong
SHANDONG ZHANHUA YONGHAO PHARMACEUTICAL TECH.CO.,LTD
Contact:+86-576-88685096
Address:GENGJU VILLAGE NORTH ONE KILOMETER,ZHANHUA DISTRICT,BINZHOU CITY,SHANDONG PROVINCE,CHINA.
ClickChem Technology Co., Limited
Contact:+86-0310-6519966/0531-52893837
Address:No.750 Shunhua Road, High-Tech Zone, Jinan city, Shandong China
website:http://www.shtopchem.com/
Contact:0086-0576-87776998
Address:room no 1608,xuhui business building yude road,xujiahui street, xuhui district
Zhuzhou Farshine Chemical Industry Co., Ltd
Contact:0086-731-28482786
Address:No. 1,Shui Xian Road, He Tang Dictrict,Hunan-412000,China
Doi:10.1016/0040-4039(95)00570-3
(1995)Doi:10.1039/a902904d
(1999)Doi:10.1002/adsc.201500149
(2015)Doi:10.1021/jo00121a002
(1995)Doi:10.1021/jo00124a010
(1995)Doi:10.1021/jo00127a002
(1995)