1700 J . Org. Chem., Vol. 66, No. 5, 2001
Rosenberg et al.
reduction of the appropriate ketone 3-X, followed by purifica-
tion by column chromatography. Alcohol 4a -Cl was synthe-
sized using the method of le Bel and Czaja.31 Alcohol 4a -Br
was prepared using the procedure of Palumbo et al.32 Alcohol
4a -OCH3 was synthesized by the addition of H2SO4/MeOH33
to cis-4-tert-butylcyclohexene oxide.27 The spectra for 2-OCH3
and 4-OCH3 differed from the literature and are reported
below.
sets.36 For ketones, second-order Moeller-Plesset perturbation
theory (MP2)37 optimizations were performed, while TS cal-
culations were done at the Hartree-Fock level. All stationary
points were confirmed with analytical second derivatives.
Single point calculations that employed MP2 theory with the
6-31++G** basis set were used to correct for electron correla-
tion and basis set deficiencies, respectively. Thus, ∆E(MP2/
6-31G*) + ∆E(HF/6-311+G**) - ∆E(HF/6-31G*) is used as an
approximation for a single point calculation at the MP2/6-
311+G** level of theory.
The ketones 3-Cl and 3-Br are reported to be thermally
unstable toward equilibration with the eq isomers at room
temperature, though indefinitely stable at dry ice tempera-
tures.34 We found that storage of these compounds at -20 °C
for periods of several weeks gave only a small percentage of
The computational modeling of LiAlH4 reductions of ketones
is complicated because “LiAlH4” itself does not give an accept-
able TS.38-40 Instead, reagents such as LiH,9ab,41 NaH,9b BH3,
9d,42
and AlH3
are used to model diastereoselectivity. Diaste-
1
eq ketone as judged by H NMR. Fortunately, the undesired
reoselectivities were calculated by subtracting the energy of
the TS that leads to the ax alcohol from the energy of the TS
that leads to the eq alcohol.
1H NMR shifts that resulted from reduction of the eq ketone
at 0 °C did not interfere with the peaks that came from
reduction of the ax ketone.
NMR Da ta . tr a n s-4-ter t-Bu tyl-tr a n s-2-m eth oxycyclo-
h exa n ol (2e-OCH3): 1H NMR (CDCl3, 300 MHz) δ 3.40 (s, 3),
3.35 (m, 1), 2.93 (m, 1), 2.61 (broad s, 1), 2.12 (m, 1), 2.00
(m, 1), 1.71 (m, 1), 1.24 (m, 2), 1.05 (m, 2), 0.86 (s, 9); 13C NMR
(CDCl3, 75 MHz) δ 85.9, 74.6, 57.0, 46.7, 32.9, 32.0, 29.9, 28.1,
25.4.
Ack n ow led gm en t. The authors would like to thank
Professors William le Noble and Peter Wipf for helpful
discussions. This work was supported by the Camille
and Henry Dreyfus Foundation, Research Corporation
(C-3694), the Petroleum Research Fund (32081-B4), and
the Geneseo Foundation.
cis-4-ter t-Bu tyl-cis-2-m eth oxycycloh exa n ol (2a -OCH3):
1H NMR (CDCl3, 300 MHz) δ 4.07 (m, 1), 3.38 (s, 3), 3.13
(m, 1), 2.15 (broad s, 1), 2.05 (m, 1), 2.00 (m, 1), 1.76 (m, 1),
1.31 (m, 3), 0.99 (m, 1), 0.85 (s, 9); 13C NMR (CDCl3, 75 MHz)
δ 82.2, 65.7, 56.3, 46.9, 32.9, 30.6, 28.0, 27.2, 20.4.
tr a n s-4-ter t-Bu tyl-cis-2-m eth oxycycloh exan ol (4e-OCH3):
1H NMR (CDCl3, 300 MHz) δ 3.52 (m, 1), 3.44 (m, 1), 3.34
(s, 3), 2.24 (broad s, 1), 2.12 (m, 1), 1.74 (m, 2), 1.49 (m, 1),
1.24 (m, 1), 0.97 (m, 2), 0.83 (s, 9); 13C NMR (CDCl3, 75 MHz)
δ 79.7, 72.1, 56.7, 40.3, 32.2, 30.9, 28.3, 27.9, 25.6.
cis-4-ter t-Bu tyl-tr a n s-2-m eth oxycycloh exan ol (4a-OCH3):
1H NMR (CDCl3, 300 MHz) δ 3.87 (m, 1), 3.38 (m, 1), 3.32
(s, 3), 1.74 (m, 4.3), 1.47 (m, 2), 1.30 (m, 4.2), 0.83 (s, 9); 13C
NMR (CDCl3, 75 MHz) δ 80.0, 67.3, 56.8, 41.0, 32.5, 29.1, 27.7,
25.4, 20.7.
J O0011787
(35) Gaussian 94 (Revision B. 3). Frisch, M. J .; Trucks, G. W.;
Schlegel, H. B.; Gill, P. M. W.; J ohnson, G.; Robb, M. A.; Cheeseman,
J . R.; Keith, T. A.; Petersson, G. A.; Montgomery, J . A.; Ragavachari,
K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J . V.; Foresman, J . B.;
Cioslowski, J .; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.;
Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J . L.;
Repogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J .; Binkley, J . S.;
Defrees, D. J .; Baker, J .; Stewart, J . P.; Head-Gordon, M.; Gonzalez,
C.; Pople, J . A. Gaussian, Inc. Pittsburgh, Pa 1995.
(36) For a complete description of the basis sets, see: Hehre, W.
J .; Radom, L.; Schleyer, P. v. R.; Pople, J . A. Ab Initio Molecular Orbital
Theory; Wiley-Interscience: New York, 1986.
(37) Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.
(38) Bonaccorsi, R.; Cimiraglia, R.; Tomasi, J .; Miertus, S. J . Mol.
Struct. 1983, 94, 11. Bonaccorsi, R.; Palla, P.; Tomasi, J . J . Mol. Struct.
1982, 87, 181.
Com p u ta tion a l Meth od ology. Calculations were per-
formed using the Gaussian 94 program suite.35 In short,
geometries are optimized using the 3-21G and 6-31G* basis
(39) Eisenstein, O.; Schlegel, H. B.; Kayser, M. M. J . Org. Chem.
1982, 47, 2886.
(40) Recently, Tomoda (ref 8e) showed that “LiAlH4” did give an
acceptable TS for cyclohexanone itself. However, our preliminary
computational data for 2-substituted cyclohexanones using this method
gave no improvement over the data reported.
(41) (a) Kaufman, E.; Schleyer, P. v. R.; Houk, K. N.; Wu, Y.-D. J .
Am. Chem. Soc. 1985, 107, 5560-5562. (b) Shi, Z.; Boyd, R. J . J . Am.
Chem. Soc. 1993, 115, 9614-9619. (c) Wong, S. S.; Paddon-Row; M.
N. J . Chem. Soc., Chem. Commun. 1991, 327-330.
(42) Coxon, J . M.; Luibrand, R. T. Tetrahedron Lett. 1993, 34, 7097-
7100.
(31) le Bel, N. A.; Czaja, R. F. J . Org. Chem. 1961, 26, 4768-4770.
(32) Palumbo, G.; Ferreri, C.; Caputo, R. Tetrahedron Lett. 1983,
24, 1307-1310.
(33) Winstein, S.; Ingraham, L. L. J . Am. Chem. Soc. 1952, 74, 1160.
(34) For a x 2-Br : Allinger, N. L.; Allinger, J . J . Am. Chem. Soc.
1958, 80, 5476-5480. For a x 2-Cl: Allinger, N. L.; Allinger, J .;
Freiberg, L. A.; Czaja, R. F.; LeBel, N. A. J . Am. Chem. Soc. 1960, 82,
5876.