ORGANIC
LETTERS
2012
Vol. 14, No. 23
6040–6043
Facile and Exclusive Formation of
Aziridinofullerenes by Acid-catalyzed
Denitrogenation of Triazolinofullerenes
Naohiko Ikuma,* Tsubasa Mikie, Yuta Doi, Koji Nakagawa, Ken Kokubo, and
Takumi Oshima*
Division of Applied Chemistry, Graduate School of Engineering, Osaka University,
2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
ikuma@chem.eng.osaka-u.ac.jp, oshima@chem.eng.osaka-u.ac.jp
Received October 24, 2012
ABSTRACT
Variously substituted [6,6]closed aziridinofullerenes were exclusively obtained from acid-catalyzed denitrogenation of triazolinofullerenes
without formation of relevant [5,6]open azafulleroids, which are the major products on noncatalyzed denitrogenation. The mechanistic con-
sideration by DFT calculations suggested a reaction sequence involving initial pre-equilibrium protonation of the triazoline N1 atom, generation of
aminofullerenyl cation by nitrogen-extrusion, and final aziridination.
Aziridinofullerenes, bearing a strained aziridine ring, are
useful synthetic intermediates for highly efficient and
regioselective addition of spherical fullerene cages, such
as acid-induced 1,4-bisaddition of aromatic compounds,1,2
[2 þ 2] cycloaddition with alkynes,2 and isomerization to
azafulleroids.1b,3 The aziridinofullerenes have been hither-
to widely prepared by 1,3-dipolar cycloaddition of azides
toC60, followed by thermal orphotochemicaldenitrogena-
tion of the triazolinofullerene adducts.4 Although some new
synthetic methods of certain aziridinofullerenes by nucleo-
philic addition of chloramines,1 iminophenyliodinanes,2
sulfilimines3 and N,N-dihalosulfonamides5 were recently
reported, the classical denitrogenation of labile triazolino-
fullerenes is still a useful procedure for the introduction of
various substituents and functional groups R at the triazo-
line N1 position such as amino acids,6 saccharides7 and
lipid substituents.8 However, the thermal denitrogenation
has some difficulty in controlling the reaction conditions
and also preventing the formation of major concomitant
[5,6]open azafulleroids.4,9,10 In this context, it is eagerly
desired to find an efficient aziridination reaction and hence
(1) (a) Minakata, S.; Tsuruoka, R.; Nagamachi, T.; Komatsu, M.
Chem. Commun. 2008, 323–325. (b) Tsuruoka, R.; Nagamachi, T.;
Murakami, Y.; Komatsu, M.; Minakata, S. J. Org. Chem. 2009, 74,
1691–1697.
(2) Nambo, M.; Segawa, Y.; Itami, K. J. Am. Chem. Soc. 2011, 133,
2402–2405.
(3) (a) Nakahodo, T.; Okada, M.; Morita, H.; Yoshimura, T.;
Ishitsuka, M. O.; Tsuchiya, T.; Maeda, Y.; Fujihara, H.; Akasaka, T.;
Gao, X.; Nagase, S. Angew. Chem., Int. Ed. 2008, 47, 1298–1300. (b)
Okada, M.; Nakahodo, T.; Ishitsuka, M. O.; Nikawa, H.; Tsuchiya, T.;
Akasaka, T.; Fujie, T.; Yoshimura, T.; Slanina, Z.; Nagase, S. Chem.
Asian J. 2010, 6, 416–423.
(4) (a) Prato, M.; Li, Q. C.; Wudl, F.; Lucchini, V. J. Am. Chem. Soc.
1993, 115, 1148–1150. (b) Grosser, T.; Prato, M.; Lucchini, V.; Hirsch,
A.; Wudl, F. Angew. Chem., Int. Ed. 1995, 34, 1343–1345. (c) Averdung,
J.; Mattay, J. Tetrahedron 1996, 52, 5407–5420. (d) Shen, C. K. F.; Yu,
H.-H.; Juo, C.-G.; Chien, K.-M.; Her, G.-R.; Luh, T.-Y. Chem.;Eur.
J. 1997, 3, 744–748. (e) Wu, R.; Lu, X.; Zhang, Y.; Zhang, J.; Xiong, W.;
Zhu, S. Tetrahedron 2008, 64, 10694–10698.
(5) Nagamachi, T.; Takeda, Y.; Nakayama, K.; Minakata, S.
Chem.;Eur. J. 2012, 18, 12035–12045.
(6) Strom, T. A.; Barron, A. R. Chem. Commun. 2010, 46, 4764–4766.
(7) Kato, H.; Yashiro, A.; Mizuno, A.; Nishida, Y.; Kobayashi, K.;
Shinohara, H. Bioorg. Med. Chem. Lett. 2001, 11, 2935–2939.
(8) (a) Murakami, H.; Watanabe, Y.; Nakashima, N. J. Am. Chem.
Soc. 1996, 118, 4484–4485. (b) Nakanishi, T.; Morita, M.; Murakami,
H.; Sagara, T.; Nakashima, N. Chem.;Eur. J. 2002, 8, 1641–1648. (c)
Murakami, H.; Nakanishi, T.; Morita, M.; Taniguchi, N.; Nakashima,
N. Chem. Asian J. 2006, 1, 860–867.
r
10.1021/ol302928d
Published on Web 11/27/2012
2012 American Chemical Society