M. Murakami, T. Katsuki / Tetrahedron Letters 43 (2002) 3947–3949
3949
Table 2. Asymmetric conversion of various allyl phenyl sulfides into N-toluenesulfonylallylamine using 1 as the catalyst
Entry
R1
R2
E/Za
Yield (%)b
% eec
1
2
3
4
5
C2H5
n-C7H15
C6H5
H
H
H
H
C2H5
Me
90/10
89/11
100/0
6/94
48
46
40
66
55
86d
85e
84d
82d
(CH3)2CꢁCHCH2CH2
98/2
B1e
a E/Z-isomer ratio of the starting material.
b Isolated yield.
c Absolute configuration of the product has not been determined.
d Determined by HPLC using DAICEL CHIRALCEL AD-H (hexane/2-propanol=9/1).
e Determined by HPLC using DAICEL CHIRALCEL AD-H (hexane/ethanol=30/1).
pad of Celite. The filtrate was evaporated, treated with
1N hydrochloric acid, and extracted with ether. The
organic layer was washed with saturated sodium chlo-
ride solution and dried over anhydrous sodium sulfate.
The mixture was concentrated and chromatographed
on silica gel (hexane:diethyl ether=7:3) to give N-(1-
methyl-2-propen-1-yl) p-toluenesulfonamide (14.6 mg,
65% yield). The enantiomeric excess of the product was
determined to be 84% by HPLC analysis using
DAICEL CHIRALCEL AD-H (hexane/2-propanol=
9:1).
J. Am. Chem. Soc. 2001, 123, 6508–6519; (h) For a review
of allylic amination, see: Johannsen, M.; Jørgensen, K. A.
Chem. Rev. 1998, 98, 1689–1708.
3. Ash, A. S. F.; Challenger, F.; Greenwood, D. J. Chem.
Soc. 1951, 1877–1882.
4. Scho¨nberger, N.; Kresze, G. Liebigs Ann. Chem. 1975,
1725–1731.
5. (a) Sharpless, K. B.; Hori, T. J. Org. Chem. 1976, 41,
176–177; (b) Sharpless, K. B.; Hori, T.; Truesdale, L. K.;
Dietrich, C. O. J. Am. Chem. Soc. 1976, 98, 269–271.
6. Bach, T.; Ko¨rber, C. J. Org. Chem. 2000, 65, 2358–2367.
7. Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1979, 18,
563–572.
In conclusion, we were able to demonstrate that N-allyl
arylsulfonamides can be prepared from allyl phenyl
sulfides by using enantioselective sulfimidation with
(OC)ruthenium(salen) complex 1 as the key step.
8. Miyake, Y.; Takada, H.; Ohe, K.; Uemura, S. J. Chem.
Soc., Perkin Trans. 1 1998, 18, 2373–2376.
9. (a) Takada, H.; Nishibayashi, Y.; Ohe, K.; Uemura, S. J.
Chem. Soc., Chem. Commun. 1996, 931–932; (b) Takada,
H.; Nishibayashi, Y.; Ohe, K.; Uemura, S.; Baird, C. P.;
Sparey, T. J.; Taylor, P. C. J. Org. Chem. 1997, 62,
6512–6518.
10. Murakami, M.; Uchida, T.; Katsuki, T. Tetrahedron Lett.
2001, 42, 7071–7074.
11. The starting crotyl aryl sulfides were prepared from com-
mercial crotyl bromide (E:Z=81:19) and used for the
present reaction without separation of geometric isomers
because of difficulty of their separation.
References
1. Jørgensen, K. A. In Modern Amination Methods; Ricci,
A., Ed.; Wiley-VCH: Weinheim, 2000; Chapter 1.
2. (a) Hayashi, T.; Yamamoto, A.; Ito, Y.; Nishioka, E.;
Miura, H.; Yanagi, K. J. Am. Chem. Soc. 1989, 111,
,
6301–6311; (b) Connell, R. D.; Rein, T.; Akermark, B.;
Helquist, P. J. Org. Chem. 1988, 53, 3845–3849; (c)
Burckhardt, U.; Baumann, M.; Trabesinger, G.; Gram-
lich, V.; Togni, A. Organometallics 1997, 16, 5252–5259;
(d) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996,
96, 395–422; (e) Trost, B. M.; Radinov, R. J. Am. Chem.
Soc. 1997, 119, 5962–5963; (f) Evans, D. A.; Campos, K.
R.; Tedrow, J. S.; Michael, F. E.; Gagne´, M. R. J. Am.
Chem. Soc. 2000, 122, 7905–7920; (g) Deng, W.-P.; You,
S.-L.; Hou, X.-L.; Dai, L.-X.; Yu, Y.-H.; Xia, W.; Sun, J.
12. Moriwake, T.; Hamano, S.; Saito, S.; Kashino, S.; Torii,
S. J. Org. Chem. 1989, 54, 4114–4120.
13. A similar stereochemistry was observed in the
[2,3]sigmatropic rearrangement of S-ylides derived from
allyl sulfides: the reactions of E- and Z-cinnamyl phenyl
sulfides gave the same product: Fukuda, T.; Irie, R.;
Katsuki, T. Tetrahedron 1999, 55, 649–664.