T. Hasegawa et al. / Bioorg. Med. Chem. Lett. 17 (2007) 1122–1126
1125
Table 2. Effect of compound 12 on the cytotoxicity of anticancer
agents toward A2780 and MDR 2780AD cellsa
Compound 13 with a carbonyl group at C-13 showed
both MDR reversing and cytotoxic activities in vitro.
On the other hand, the corresponding 13a-hydroxy
derivative 12 showed efficient MDR reversing activity
but its cytotoxic activity decreased drastically. Introduc-
tion of an isoserine moiety to the 13a-hydroxyl group of
taxane derivatives increases cytotoxic activity remark-
ably as shown in the change from baccatin III (4) to tax-
ol (2) in Table 1. Compound 12 is also expected to be a
lead compounds of anti-MDR cancer agents or antican-
cer agents after introduction of the isoserine moiety on
the13a-hydroxyl group of 12.
Cell lines
MDR modulator
(lM)
IC50 (nM) of anticancer
agents
Taxol
ADM
VCR
2780
No modulator
Verapamil
0.7
0.7
0.8
0.9
0.7
0.9
0.8
13
11
9
0.9
1
0.2
2
10
0.8
1.1
1
14
8
12
0.2
2
10
10
7
0.8
0.8
2780AD
No modulator
Verapamil
535
197
11
909
615
109
59
895
563
29
7
0.2
Acknowledgment
2
10
0.9
375
10
12
0.2
556
107
17
336
30
7
We thank Ms. Sachiko Shimizu for her technical assis-
tance in biological evaluation.
2
10
1
The values represent the mean of triplicate determination.
a Enhancing effects of verapamil and compound 12 on the cytotoxicity
of Taxol, adriamycin (ADM), and vincristin (VCR) toward A2780
cells and MDR A2780 (2780AD ) cells were determined in the
presence of 0.2, 2.0, and 10 lM of each compound.
References and notes
1. Ueda, K.; Cardarelli, C.; Gottesman, M. M.; Pastan, I.
Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 3004.
2. Ueda, K.; Komano, T. Gan To Kagaku Ryoho 1988, 15,
2858.
3. Shigemori, H.; Kobayashi, J. J. Nat. Prod. 2004, 67, 245.
4. Kobayashi, J.; Shigemori, H.; Hosoyama, H.; Chen, Z.;
Akiyama, S.; Naito, M.; Tsuruo, T. Jpn. J. Cancer Res.
2000, 91, 638.
5. Kobayashi, J.; Hosoyama, H.; Wang, X. X.; Shigemori,
H.; Sudo, Y.; Tsuruo, T. Bioorg. Med. Chem. Lett. 1998,
8, 1555.
6. Kobayashi, J.; Hosoyama, H.; Shigemori, H.; Koiso, Y.;
Iwasaki, S. Experientia 1995, 51, 592.
7. Ojima, I.; Borella, C. P.; Wu, X.; Bounaud, P. Y.; Oderda,
C. F.; Sturm, M.; Miller, M. L.; Chakravarty, S.; Chen, J.;
Huang, Q.; Pera, P.; Brooks, T. A.; Baer, M. R.; Bernacki,
R. J. J. Med. Chem. 2005, 48, 2218.
8. Brooks, T. A.; Kennedy, D. R.; Gruol, D. J.; Ojima, I.;
Baer, M. R.; Bernacki, R. J. Anticancer Res. 2004, 24, 409.
9. Minderman, H.; Brooks, T. A.; O’Loughlin, K. L.; Ojima,
I.; Bernacki, R. J.; Baer, M. R. Cancer Chemother.
Pharmacol. 2004, 53, 363.
10. Brooks, T. A.; Minderman, H.; O’Loughlin, K. L.; Pera,
P.; Ojima, I.; Baer, M. R.; Bernacki, R. J. Mol. Cancer
Ther. 2003, 2, 1195.
11. Geney, R.; Ungureanu, M.; Li, D.; Ojima, I. Clin. Chem.
Lab. Med. 2002, 40, 918.
12. (a) Ando, M. PCT Int Appl WO 2001007040 A1,1 Feb
2001. Appl WO 2000-JP 5036, 27 Jul 2000. Priority: JP
1999-214273, 28 July 1999; JP 1999-224652, 6 Aug 1999;
JP 2000-76404, 14 March 2000. Chem. Abstr. 2001, 134,
136666; (b) Kosugi, K.; Sakai, J.; Zhang, S.; Watanabe,
Y.; Sasaki, H.; Suzuki, T.; Hagiwara, H.; Hirata, N.;
Hirose, K.; Ando, M.; Tomida, T.; Tsuruo, T. Phyto-
chemistry 2000, 54, 839; (c) Sakai, J.; Sasaki, H.; Kosugi,
K.; Zhang, S.; Hirata, N.; Hirose, K.; Tomida, A.;
Tsuruo, T.; Ando, M. Heterocycles 2001, 999.
13. (a) Ando, M. Jpn. Kokai Tokkyo Koho JP 2000 106893
A2, 2000. Ando, M. PCT Int Appl WO 2001007040 A1, 1
Feb 2001; (b) Sakai, J.; Ando, M.; Uchiyama, T.;
Fujisawa, H.; Kitabatake, M.; Toyoizumi, K.; Hirose,
K. Nippon Kagaku kaishi 2002, 231; (c) Bai, J.; Kitaba-
take, M.; Toyoizumi, K.; Fu, L.; Zhang, S.; Dai, J.; Sakai,
J.; Hirose, K.; Yamori, T.; Tomida, A.; Tsuruo, T.; Ando,
M. J. Nat. Prod. 2004, 67, 58; (d) Bai, J.; Kitabatake, M.;
Cell growth inhibitory activity (IC50) of compounds 4–
17 to three different cell lines was examined (Table 1).
The three cell lines employed in this experiment are hu-
man lung fibroblast cells (WI-38), malignant lung tumor
cells (VA-13) induced from WI-38, and human liver can-
cer Hepatoma G2 cells (HepG2). Compound 8 showed
the smallest IC50 values toward VA-13 and HepG2 in
compounds 5–8. The results suggested that displacement
of the acetoxyl group at C-9 and/or C-10 of 8 with a
hydroxyl group induced the decrease of activity in 5,
6, and 7. Cytotoxic activity of 9 against WI-38, VA-
13, and HepG2 decreased remarkably on displacement
of the 2a-benzoyloyl group of 8 with an acetoxyl group.
Compound 13 showed moderate and weak activities to
VA-13 and HepG2, respectively. Compound 14 with
5a-,20-dihydroxyl groups instead of 5a,20-oxetane ring
in 13 showed weaker activity to VA-13 than that of
13. Compounds 15 and 16 with a 5a-,20-dihydroxyl
and 5a-hydroxy-20-acetoxy groups, respectively,
showed significant activity toward VA-13. On the con-
trary, compound 17, 2-cinnamoyloxy derivative of 16,
showed significant activity not to VA-13 but HepG2.
These results suggested that some modifications of the
functional groups on the taxane skeleton induced a
new cytotoxicity to a different cell line.
Compounds 6, 9, and 12 showed MDR reversal activities
but have no cytotoxicity. These compounds are expected
to be lead compounds of MDR cancer reversal agents.
On the other hand, cytotoxic activity of compounds 8
and17 against HepG2 is the same level or more than that
of taxol (2) or baccatin III (4). Since compounds 8 and 17
also showed significant MDR reversal activity, they are
expected as lead compounds of new type anticancer
agents. Compounds 13, 15, and 16 showed significant
cytotoxic activity toward VA-13. Among them, 13 and
16 showed significant MDR reversal activity and are
expected to be a new type of anticancer agents.