Inorganic Chemistry
Article
(e) Mewis, R. E.; Archibald, S. J. Biomedical Applications of
Macrocyclic Ligand Complexes. Coord. Chem. Rev. 2010, 254,
1686−1712. (f) Mitic, N.; Smith, S. J.; Neves, A.; Guddat, L. W.;
Gahan, L. R.; Schenk, G. The Catalytic Mechanisms of Binuclear
Metallohydrolases. Chem. Rev. 2006, 106, 3338−3363.
(4) For reference about hydrolysis of phosphate diesters, see:
(a) Kaminskaia, N. V.; He, C.; Lippard, S. J. Reactivity of μ-
Hydroxodizinc(II) Centers in Enzymatic Catalysis through Model
Studies. Inorg. Chem. 2000, 39, 3365−3373. (b) Jeung, C.-S.; Song, J.
B.; Kim, Y.-H.; Suh, J. Hydrolysis of Linear DNA Duplex Catalyzed by
Co(III) Complex of Cyclen Attached to Polystyrene. Bioorg. Med.
Chem. Lett. 2001, 11, 3061−3064. (c) Ait-Haddou, H.; Sumaoka, J.;
Wiskur, S. L.; Folmer-Andersen, J. F.; Anslyn, E. V. Remarkable
Cooperativity between a ZnII Ion and Guanidinium/Ammonium
Groups in the Hydrolysis of RNA. Angew. Chem., Int. Ed. 2002, 41,
and DNA Hydrolysis by a Multivalent, Nanoparticle-Based Catalyst. J.
Am. Chem. Soc. 2008, 130, 15744−15756. (t) Taran, O.; Medrano, F.;
Yatsimirsky, A. K. Rapid Hydrolysis of Model Phosphate Diesters by
Alkaline-earth Cations in Aqueous DMSO: Speciation and Kinetics.
Dalton Trans. 2008, 6609−6618. (u) Subat, M.; Woinaroschy, K.;
Gerstl, C.; Sarkar, B.; Kaim, W.; Konig, B. 1,4,7,10-Tetraazacyclodo-
decane Metal Complexes as Potent Promoters of Phosphodiester
Hydrolysis under Physiological Conditions. Inorg. Chem. 2008, 47,
4661−4668. (v) Penkova, L. V.; Maciag, A.; Rybak-Akimova, E. V.;
Haukka, M.; Pavlenko, V. A.; Iskenderov, T. S.; Kozlowski, H.; Meyer,
F.; Fritsky, I. O. Efficient Catalytic Phosphate Ester Cleavage by
Binuclear Zinc(II) Pyrazolate Complexes as Functional Models of
Metallophosphatases. Inorg. Chem. 2009, 48, 6960−6971. (w) Piove-
zan, C.; Jovito, R.; Bortoluzzi, A. J.; Terenzi, H.; Fischer, F. L.;
Severino, P. C.; Pich, C. T.; Azzolini, G. G.; Peralta, R. A.; Rossi, L.
M.; Neves, A. HeterodinuclearFeIIIZnII-Bioinspired Complex Sup-
ported on 3-Aminopropyl Silica. Efficient Hydrolysis of Phosphate
Diester Bonds. Inorg. Chem. 2010, 49, 2580−2582. (x) Bonomi, R.;
Scrimin, P.; Mancin, F. Phosphate Diesters Cleavage Mediated by
Ce(IV) Complexes Self-Assembled on Gold Nanoparticles. Org.
Biomol. Chem. 2010, 8, 2622−2626. (y) Katz, M. J.; Mondloch, J. E.;
Totten, R. K.; Park, J. K.; Nguyen, S. T.; Farha, O. K.; Hupp, J. T.
Simple and Compelling Biomimetic Metal-Organic Framework
Catalyst for the Degradation of Nerve Agent Simulants. Angew.
Chem., Int. Ed. 2014, 53, 497−501. (z) Zhamoitina, A. I.; Sauerwein,
̈
4013−4016. (d) Scarso, A.; Scheffer, U.; Gobel, M.; Broxterman, Q.
B.; Kaptein, B.; Formaggio, F.; Toniolo, C.; Scrimin, P. A Peptide
Template as an Allosteric Supramolecular Catalyst for the Cleavage of
Phosphate Esters. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 5144−5149.
(e) Humphry, T.; Forconi, M.; Williams, N. H.; Hengge, A. C.
Altered Mechanisms of Reactions of Phosphate Esters Bridging a
Dinuclear Metal Center. J. Am. Chem. Soc. 2004, 126, 11864−11869.
(f) Andrew Knight, D.; Delehanty, J. B.; Goldman, E. R.; Bongard, J.;
Streich, F.; Edwards, L. W.; Chang, E. L. Carboxylic Acid
Functionalized Cobalt(III) CyclenComplexes for Catalytic Hydrolysis
of Phosphodiester Bonds. Dalton Trans. 2004, 2006−2011. (g) Jikido,
R.; Shiraishi, H.; Matsufuji, K.; Ohba, M.; Furutachi, H.; Suzuki, M.;
Okawa, H. Mass Spectrometric and Spectroscopic Studies on
Hydrolysis of Phosphoesters by BisphenolatoDinuclearMetal(II)
Complexes (Metal = Mn, Co, Ni, and Zn). Bull. Chem. Soc. Jpn.
2005, 78, 1795−1803. (h) Maldonado Calvo, J. A.; Vahrenkamp, H.
A New Tris (2-furyl) Substituted PyrazolylborateLigand and its Zinc
Complex Chemistry. Inorg. Chim. Acta 2005, 358, 4019−4026.
(i) Mardolado Calvo, J. A.; Vahrencamp, H. A New Tris (2-furyl)
Substituted PyrazolylborateLigand and its Zinc Complex Chemistry.
Inorg. Chim. Acta 2006, 359, 4079−4086. (j) Jiang, F.; Huang, L.;
Meng, X.; Du, J.; Yu, X.; Zhao, Y.; Zeng, X. MetallomicellarCatalysis:
Hydrolysis of Phosphate Monoester and Phosphodiester by Cu(II),
Zn(II) Complexes of Pyridyl ligands in CTAB Micellar Solution. J.
Colloid Interface Sci. 2006, 303, 236−242. (k) Sumaoka, J.; Chen, W.;
Kitamura, Y.; Tomita, T.; Yoshida, J.; Komiyama, M. Application of
Cerium(IV)/EDTA Complex for Future Biotechnology. J. Alloys
Compd. 2006, 408−412, 391−395. (l) Belousoff, M. J.; Duriska, M.
B.; Graham, B.; Batten, S. R.; Moubaraki, B.; Murray, K. S.; Spiccia, L.
Synthesis, X-ray Crystal Structures, Magnetism, and Phosphate Ester
Cleavage Properties of Copper(II) Complexes of N-Substituted
Derivatives of 1, 4,7-Triazacyclononane. Inorg. Chem. 2006, 45,
3746−3755. (m) Feng, G.; Mareque-Rivas, J. C.; Williams, N. H.
Comparing a Mononuclear Zn(II) Complex with Hydrogen Bond
Donors with a Dinuclear Zn(II) Complex for CatalysingPhosphate
Ester Cleavage. Chem. Commun. 2006, 303, 1845−1847. (n) Feng, G.;
Natale, D.; Prabaharan, R.; Mareque-Rivas, J. C.; Williams, N. H.
Efficient Phosphodiester Binding and Cleavage by a ZnII Complex
Combining Hydrogen-Bonding Interactions and Double Lewis Acid
Activation. Angew. Chem., Int. Ed. 2006, 45, 7056−7059. (o) Perez
Olmo, C.; Bohmerle, K.; Vahrenkamp, H. Zinc Enzyme Modelling
with Zinc Complexes of Polar PyrazolylborateLigands. Inorg. Chim.
Acta 2007, 360, 1510−1516. (p) Mancin, F.; Tecilla, P. Zinc(II)
Complexes as Hydrolytic Catalysts of Phosphate Diester Cleavage:
From Model Substrates to Nucleic Acids. New J. Chem. 2007, 31,
800−817. (q) Cartuyvels, E.; Absillis, G.; Parac-Vogt, T. N.
Questioning the Paradigm of Metal Complex Promoted Phospho-
diester Hydrolysis: [Mo7O24]6‑Polyoxometalate Cluster as an Unlikely
Catalyst for the Hydrolysis of a DNA Model Substrate. Chem.
Commun. 2008, 85−87. (r) Takebayashi, S.; Shinkai, S.; Ikeda, M.;
Takeuchi, M. Metal Ion Induced Allosteric Transition in the Catalytic
Activity of an Artificial Phosphodiesterase. Org. Biomol. Chem. 2008,
6, 493−499. (s) Bonomi, R.; Selvestrel, F.; Lombardo, V.; Sissi, C.;
Polizzi, S.; Mancin, F.; Tonellato, U.; Scrimin, P. Phosphate Diester
̈
Y.; Konig, B.; Arslanov, V. V.; Kalinina, M. A. A Binary Catalytic
System Based on Mixed Monolayers of Phospholipid and Amphiphilic
Bis(Zn2+-cyclen). Colloid J. 2014, 76, 153−160. (aa) Tirel, E. Y.;
Williams, N. H. Enhancing Phosphate Diester Clevage by Zinx
Complex through Controlling Nucleophile Coordination. Chem. - Eur.
J. 2015, 21, 7053−7056.
(5) For references of artificial compounds that accelerate the
hydrolysis of phosphate monoesters, see: (a) Seo, J. S.; Sung, N.-D.;
Hynes, R. C.; Chin, J. Structure and Reactivity of a DinuclearCobalt-
(III) Complex with a Bridging Phosphate Monoester. Inorg. Chem.
1996, 35, 7472−7473. (b) Williams, N. H.; Lebuis, A.-M.; Chin, J. A
Structural and Functional Model of DinuclearMetallophosphatases. J.
Am. Chem. Soc. 1999, 121, 3341−3348. (c) Williams, N. H.; Takasaki,
B.; Wall, M.; Chin, J. Structure and Nuclease Activity of Simple
Dinuclear Metal Complexes: Quantitative Dissection of the Role of
Metal Ions. Acc. Chem. Res. 1999, 32, 485−493. (d) Vance, D. H.;
Czarnik, A. W. Functional Group Convergency in a Binuclear
Dephosphorylation Reagent. J. Am. Chem. Soc. 1993, 115, 12165−
12166. (e) Koike, T.; Inoue, M.; Kimura, E.; Shiro, M. Novel
Properties of Cooperative DinuclearZinc(II) Ions: The Selective
Recognition of Phosphomonoesters and Their PO Ester Bond
Cleavage by a New Dinuclear Zinc(II) Cryptate. J. Am. Chem. Soc.
1996, 118, 3091−3099. (f) Hettich, R.; Schneider, H.-J. Cobalt(III)
Polyamine Complexes as Catalysts for the Hydrolysis of Phosphate
Esters and of DNA. A Measurable 10 Million-Fold Rate Increase. J.
Am. Chem. Soc. 1997, 119, 5638−5647. (g) Zulkefeli, M.; Suzuki, A.;
Shiro, M.; Hisamatsu, Y.; Kimura, E.; Aoki, S. Selective Hydrolysis of
Phosphate Monoester by Supramolecular Phosphatase Formed by the
self-assembly of a Bis(Zn2+-cyclen) Complex, Cyanuric Acid, and
Copper in an Aqueous Solution (Cyclen = 1,4,7,10-Tetraazacyclodo-
decane). Inorg. Chem. 2011, 50, 10113−10123. (h) Der, B. S.; et al.
Catalysis by a De Novo Zinc-Mediated Protein Interface: Implications
for Natural Enzyme Evolution and Rational Enzyme Engineering.
Biochemistry 2012, 51, 3933−3940. (i) Zhang, X.; Zhu, Y.; Zheng, X.;
Phillips, D. L.; Zhao, C. Mechanistic Investigation on the Cleavage of
Phosphate Monoester Catalyzed by Unsymmetrical Macrocyclic
Dinuclear Complexes: The Selection of Metal Centers and Intrinsic
Flexibility of the Ligand. Inorg. Chem. 2014, 53, 3354−33361. (j) Xue,
S.-S.; Zhao, M.; Ke, Z.-F.; Cheng, B.-C.; Su, H.; Cao, H.; Cao, K. C.;
Wang, J.; Ji, L.-N.; Mao, Z.-W. Enantioselective Hydrolysis of Amino
Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes. Sci.
Rep. 2016, 6, 22080.
(6) For review, see: (a) Conn, M. M.; Rebek, J., Jr. Self-Assembling
Capsules. Chem. Rev. 1997, 97, 1647−1668. (b) Fujita, M. Molecular
L
Inorg. Chem. XXXX, XXX, XXX−XXX