S. Tanaka et al. / Tetrahedron Letters 48 (2007) 7660–7664
7663
Royal Society of Chemistry: Cambridge, 1989; (b) Ikeda,
A.; Shinkai, S. Chem. Rev. 1997, 97, 1713; (c) Gutsche, C.
D. Calixarenes Revisited. In Monographs in Supramole-
cular Chemistry; Stoddart, J. F., Ed.; The Royal Society of
Chemistry: Cambridge, 1998; (d) Calixarenes in Action;
Mandolini, L., Ungaro, R., Eds.; Imperial College Press:
London, 2000; (e) Calixarenes 2001; Asfari, Z., Bo¨hmer,
V., Harrowfield, J. M., Vicens, J., Eds.; Kluwer Academic
Publishers: Dordrecht, 2001.
2. For transformation of the hydroxy groups of calixarenes
into other functions, see: (a) Goren, Z.; Biali, S. E. J.
Chem. Soc., Perkin Trans. 1 1990, 1484; (b) Ohseto, F.;
Murakami, H.; Araki, K.; Shinkai, S. Tetrahedron Lett.
1992, 33, 1217; (c) Aleksiuk, O.; Grynszpan, F.; Biali, S. E.
J. Org. Chem. 1993, 58, 1994; (d) Gibbs, C. G.; Sujeeth, P.
K.; Rogers, J. S.; Stanley, G. G.; Krawiec, M.; Watson,
W. H.; Gutsche, C. D. J. Org. Chem. 1995, 60, 8394; (e)
Zieba, R.; Desroches, C.; Chaput, F.; Sigala, C.; Jean-
neau, E.; Parola, S. Tetrahedron Lett. 2007, 48, 5401.
3. Reviews: (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95,
2457; (b) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron
2002, 58, 9633.
Figure 1. Stereoview of the X-ray structure of bis(phenoxathiine) 7a.
xanthene-type compound, xanthenocalix[5]arene, by an
intramolecular cyclization between the in situ-generated
phenyl cation and an adjacent hydroxy group.18,19 Xan-
thenocalix[6]arene20 and alkoxy group-incorporated
xanthenocalix[5], [6], and [8]arenes21 have also been
prepared from spirodienone derivatives of the corre-
sponding calix[n]arenes. As for the intramolecularly
cyclized phenoxathiine-type thiacalixarene, however,
bis(phenoxathiine) 7a has only been obtained as a
byproduct in the base-catalyzed rearrangement of 1,3-
bistriflate 6a to 1,2-counterpart 10a.15,22 To our plea-
sure, recrystallization of compound 7a from 1,2-dichlo-
roethane–acetonitrile gave single crystals suitable for
X-ray crystallographic analysis (Fig. 1).23 The X-ray
structure shows that the two phenoxathiine moieties
are folded oppositely to each other along their respective
imaginary lines passing through the S and O atoms of
the 1,4-oxathiine rings. The C–S–C and C–O–C bond
angles and the folding angle between the two benzene
planes are 97.51ꢁ, 116.17ꢁ, and 140.83ꢁ for one phenoxa-
thiine moiety and 97.88ꢁ, 115.95ꢁ, and 140.09ꢁ for the
other, which is in reasonable agreement with those
reported for the parent compound (97.7ꢁ, 117.4ꢁ, and
147.8ꢁ, respectively).24 The two S atoms connecting
these phenoxathiine halves have ordinary bond angles
(98.29ꢁ and 100.92ꢁ). Therefore, no strain is found in
the tricyclic structure. On the other hand, the X-ray data
for amine 8a showed that it adopted a cone conforma-
tion but detailed analysis failed because of its severely
disordered structure.
4. Reviews: (a) Stille, J. K. Angew. Chem., Int. Ed. Engl.
1986, 25, 508; (b) Espinet, P.; Echavarren, A. M. Angew.
Chem., Int. Ed. 2004, 43, 4704.
´
5. (a) Gonzalez, J. J.; Nieto, P. M.; Prados, P.; Echavarren,
A. M.; de Mendoza, J. J. Org. Chem. 1995, 60, 7419; (b)
´
´
Csok, Z.; Szalontai, G.; Czira, G.; Kollar, L. Supramol.
Chem. 1998, 10, 69; (c) Chowdhury, S.; Bridson, J. N.;
Georghiou, P. E. J. Org. Chem. 2000, 65, 3299.
6. Al-Saraierh, H.; Miller, D. O.; Georghiou, P. E. J. Org.
Chem. 2005, 70, 8273.
7. Reviews: (a) Iki, N.; Miyano, S. J. Incl. Phenom. 2001, 41,
99; (b) Morohashi, N.; Narumi, F.; Iki, N.; Hattori, T.;
Miyano, S. Chem. Rev. 2006, 106, 5291.
8. For stereoisomers of sulfinylcalix[4]arene, see: Morohashi,
N.; Katagiri, H.; Iki, N.; Yamane, Y.; Kabuto, C.;
Hattori, T.; Miyano, S. J. Org. Chem. 2003, 68, 2324.
9. Katagiri, H.; Iki, N.; Hattori, T.; Kabuto, C.; Miyano, S.
J. Am. Chem. Soc. 2001, 123, 779.
10. Katagiri, H.; Iki, N.; Matsunaga, Y.; Kabuto, C.; Miyano,
S. Chem. Commun. 2002, 2080.
11. Tanaka, S.; Katagiri, H.; Morohashi, N.; Hattori, T.;
Miyano, S. Tetrahedron Lett. 2007, 48, 5293.
12. Review: Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed.
2003, 42, 5400.
13. Compound 6a: mp 296–298 ꢁC (decomp.); IR (KBr) 3460,
1
2966, 1427, 1211, 1138, 1065 cmꢀ1; H NMR (400 MHz,
In conclusion, we have shown here a convenient method
for the synthesis of monoaminothiacalix[4]arene 4a and
its methylene-bridged analog 4b via an Ullmann-type
amination. It has also been shown that bis(phenoxathi-
ine) 7a can be readily prepared by an Ullmann-type
etherification of 1,3-bistriflate 6a.
CDCl3) d 0.92 [18H, s, C(CH3)3 · 2], 1.34 [18H, s,
C(CH3)3 · 2], 6.12 (2H, s, OH · 2), 7.16 (4H, s, ArH),
7.74 (4H, s, ArH); 13C NMR (100 MHz, CDCl3) d 30.65,
31.39, 34.30, 34.45, 121.00, 128.81, 133.37, 134.86, 143.82,
147.69, 151.49, 155.41; FAB-MS m/z 984 (M+). Anal.
Calcd for C42H46F6O8S6: C, 51.20; H, 4.71; S, 19.53.
Found: C, 51.01; H, 4.71; S, 19.82.
14. Typical procedure for the amination: To a suspension
of bistriflate 6a (1.00 g, 1.02 mmol), CuI (425 mg,
2.23 mmol), and K3PO4 (433 mg, 2.04 mmol) in toluene
Acknowledgements
(40 mL) was added benzylamine (d = 0.983 g mLꢀ1
;
This study was supported in part by Grants-in-Aid for
Scientific Research (No. 18037004 and No. 19550100)
from the Ministry of Education, Culture, Sports, Sci-
ence and Technology, Japan.
133 lL, 1.22 mmol) and the mixture was stirred at 80 ꢁC
for 15 h. After aqueous work-up, the crude mixture was
recrystallized from dichloromethane–methanol to give
monoamine 8a (308 mg). The mother liquor was concen-
trated and chromatographed twice on silica gel with
hexane–chloroform (1:1) and then hexane–ethyl acetate
(6:1) to give an additional crop of 8a (100 mg) for a total
yield of 408 mg (43%), mp 241–243 ꢁC (decomp.); IR
References and notes
1
(KBr) 3425, 3283, 2963, 1450, 1427, 1207, 1134 cmꢀ1; H
1. Reviews: (a) Gutsche, C. D. Calixarenes. In Monographs
in Supramolecular Chemistry; Stoddart, J. F., Ed.; The
NMR (400 MHz, CDCl3) d 0.71 [9H, s, C(CH3)3], 1.13