2461
H. Yanai et al.
Letter
Synlett
Acknowledgment
(10) For selected examples on in situ generation of silicon Lewis
acids, see: (a) García-García, P.; Lay, F.; García-García, P.;
Rabalakos, C.; List, B. Angew. Chem. Int. Ed. 2009, 48, 4363.
(b) Yamamoto, H.; Boxer, M. B. J. Am. Chem. Soc. 2006, 128, 48.
(c) Inagawa, K.; Takasu, K.; Ihara, M. J. Am. Chem. Soc. 2005, 127,
3668.
This work was partially supported by a Grant-in-Aid for Scientific Re-
search on Innovative Areas ‘Advanced Molecular Transformations by
Organocatalysts’ from the MEXT, Mitsubishi Gas Chemical Co. Ltd.,
and the Kurata Memorial Hitachi Science and Technology Foundation
(11) Li, W.-D. Z.; Zhang, X.-X. Org. Lett. 2002, 4, 3485.
(12) (a) Yanai, H.; Ogura, H.; Fukaya, H.; Kotani, A.; Kusu, F.; Taguchi,
T. Chem. Eur. J. 2011, 17, 11747. (b) Zhang, M.; Sonoda, T.;
Shiota, Y.; Mishima, M.; Yanai, H.; Fujita, M.; Taguchi, T. J. Phys.
Org. Chem. 2015, 28, 181.
(13) Other examples on carbon acid catalysis, see: (a) Ishihara, K.;
Hasegawa, A.; Yamamoto, H. Angew. Chem. Int. Ed. 2001, 40,
4077. (b) Hasegawa, A.; Naganawa, Y.; Fushimi, M.; Ishihara, K.;
Yamamoto, H. Org. Lett. 2006, 8, 3175. (c) Saadi, J.; Akakura, M.;
Yamamoto, H. J. Am. Chem. Soc. 2011, 133, 14248.
(14) Stern, A.; Swenton, J. S. J. Org. Chem. 1987, 52, 2763.
(15) Under similar conditions, perfect carbonyl selectivity was
observed in the Mukaiuyama aldol reaction of benzaldehyde
and its dimethyl acetal with 5a. Likewise, the reaction of 1,4-
dioxaspiro[4.5]decan-8-one, which was a cyclic ketal derivative
of 1a, proceeded in a carbonyl selective manner.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
ortioInfgrmoaitn
References and Notes
(1) (a) Trost, B. M. Science 1991, 254, 1471. (b) Wender, P. A.;
Verma, V. A.; Paxton, T. J.; Pillow, T. H. Acc. Chem. Res. 2008, 41,
40. (c) Newhouse, T.; Baran, P. S.; Hoffmann, R. W. Chem. Soc.
Rev. 2009, 38, 3010.
(2) (a) Poss, C. S.; Schreiber, S. L. Acc. Chem. Res. 1994, 27, 9.
(b) Magnuson, S. R. Tetrahedron 1995, 51, 2167. (c) Vrettou, M.;
Gray, A. A.; Brewer, A. R. E.; Barrett, A. G. M. Tetrahedron 2007,
63, 1487.
(3) (a) Fujioka, H.; Kitagawa, H.; Matsunaga, N.; Nagatomi, Y.; Kita,
Y. Tetrahedron Lett. 1996, 37, 2245. (b) Fujioka, H.; Ohba, Y.;
Hirose, H.; Murai, K.; Kita, Y. Angew. Chem. Int. Ed. 2005, 44, 734.
(4) For a recent review, see: Matsuo, J.; Murakami, M. Angew. Chem.
Int. Ed. 2013, 52, 9109.
(5) For selected examples, see: (a) Mukaiyama, T.; Narasaka, K.;
Banno, K. Chem. Lett. 1973, 1011. (b) Noyori, R.; Yokoyama, K.;
Sakata, J.; Kuwajima, I.; Nakamura, E.; Shimizu, M. J. Am. Chem.
Soc. 1977, 99, 1265. (c) Denmark, S. E.; Fan, Y. J. Am. Chem. Soc.
2002, 124, 4233. (d) Oisaki, K.; Zhao, D.; Kanai, M.; Shibasaki, M.
J. Am. Chem. Soc. 2006, 128, 7164.
(16) By 13C NMR study, it was indicated that silyl carboxonium was
higher electrophilic compared with methylated one, see: Olah,
G. A.; Wang, Q.; Li, X.; Rasul, G.; Prakash, G. K. S. Macromolecules
1996, 29, 1857.
(17) Typical Procedure (Table 2, Entry 1)
To a solution of 5,5-dimethoxyhexan-2-one (1c, 80.1 mg, 0.501
mmol) and zwitterion 3 (2.6 mg, 5.0 μmol) in Et2O (1.5 mL) was
added a solution of tert-butyl[(1-ethoxyvinyl)oxy]dimethylsi-
lane (5a, 121 mg, 0.598 mmol) in Et2O (0.5 mL) at 0 °C. After
being stirred for 20 min at 0 °C, the reaction was quenched by
treatment with Et3N (0.3 mL), then it was concentrated under
reduced pressure. The resulting residue was dissolved in a
mixed solvent of acetone, H2O, and AcOH (1:1:1 v/v, 3.0 mL).
This mixture was stirred for 30 min at r.t. After usual extractive
workup, the obtained residue was purified by column chroma-
tography on silica gel (hexane–EtOAc, 3:1) to give ethyl 3-
methoxy-3-methyl-6-oxoheptanoate (9c) in 87% yield (94.1 mg,
0.436 mmol); colorless oil. IR (neat): ν = 2980, 2947, 2910,
(6) (a) Mukaiyama, T.; Ohno, T.; Han, J. S.; Kobayashi, S. Chem. Lett.
1991, 949. (b) Otera, J.; Chen, J. Synlett 1996, 321. (c) Ooi, T.;
Tayama, E.; Takahashi, M.; Maruoka, K. Tetrahedron Lett. 1997,
38, 7403.
(7) Yanai, H.; Ishii, N.; Matsumoto, T.; Taguchi, T. Asian J. Org. Chem.
2013, 2, 989.
1728, 1717, 1365, 1182, 1075, 1034 cm–1 1H NMR (400 MHz,
.
(8) Yanai, H.; Yoshino, T.; Fujita, M.; Fukaya, H.; Kotani, A.; Kusu, F.;
Taguchi, T. Angew. Chem. Int. Ed. 2013, 52, 1560.
CD3CN): δ = 1.19 (3 H, t, J = 7.2 Hz), 1.19 (3 H, s), 1.71–1.85 (2 H,
m), 2.08 (3 H, s), 2.41 (1 H, d, J = 13.7 Hz), 2.46 (2 H, t, J = 8.0 Hz),
(9) As catalytically active species, silyl methanide species gener-
ated by the C-silylation reaction of the counter carbanion was
considerable. See: (a) Takahashi, A.; Yanai, H.; Taguchi, T. Chem.
Commun. 2008, 2385. (b) Yanai, H.; Takahashi, A.; Taguchi, T.
Chem. Commun. 2010, 46, 8728. (c) Hiraiwa, Y.; Ishihara, K.;
Yamamoto, H. Eur. J. Org. Chem. 2006, 1837.
2.47 (1 H, d, J = 13.7 Hz), 3.11 (3 H, s), 4.06 (2 H, q, J = 7.2 Hz). 13
C
NMR (100 MHz, CD3CN): δ = 13.5, 22.1, 29.1, 31.0, 37.3, 42.5,
48.6, 60.0, 74.9, 170.5, 208.2. MS (ESI-TOF): m/z = 239 [M + Na]+.
HRMS: m/z calcd for C11H20O4 [M + Na]+: 239.1259; found:
239.1259. Anal. Calcd for C11H20O4: C, 61.09; H, 9.32. Found: C,
60.91; H, 9.29.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 2457–2461