A Porphyrin with Two Coordination Sites
with sodium sulfate, the solid residue obtained after evaporation of
the solvents was purified by chromatography (silica gel; cyclohex-
ane/dichloromethane, 1:1). After crystallization (dichloromethane/
methanol), compound 5 was obtained in 64% yield (109 mg,
Centre National de la Recherche Scientifique (CNRS) and the Uni-
versity of Strasbourg for financial support.
1
131 μmol). H NMR (400 MHz, CDCl3, 25 °C): δ = 9.45 and 8.84
[1]
[2]
[3]
During the course of this work, the same compounds 6 and 7,
obtained by a different synthetic route, were described: J.
Akhigbe, M. Zeller, C. Brückner, Org. Lett. 2011, 13, 1322–
1325.
See for example: K. M. Kadish, K. M. Smith, R. Guilard
(Eds.), Handbook of Porphyrin Science Vol. 4: Phototherapy,
Radioimmunotherapy and Imaging, World Scientific, Singapore,
2010.
(2 d, J = 4.8 Hz, 2 H, pyrrole), 8.86 (dd, J = 8, 1.2 Hz, 1 H, cycl.
Ph), 8.65 and 8.57 (2 d, J = 4.8 Hz, 2 H, pyrrole), 8.61 and 8.34 (2
d, J = 4.8 Hz, 2 H, pyrrole), 8.10 (dd, J = 8, 1.2 Hz, 1 H, cycl. Ph),
7.94–7.99 (br. m, 6 H, o-Ph), 7.62–7.74 (m, 10 H, m+p-Ph + cycl.
Ph), 7.61 (ddd, J = 8, 1.2, 1.2 Hz, 1 H, cycl. Ph), 4.15 (d, J = 7 Hz,
2 H, CH2), 1.92 (m, 1 H, CH), 0.78 (d, J = 6.8 Hz, 6 H, CH3) ppm.
UV/Vis (CH2Cl2): λmax (ε, m–1 cm–1) = 452 (148000), 566 (17700),
606 (12500) nm. C49H34N6NiO4 (829.56): calcd. C 70.95, H 4.13,
N 10.13; found C 71.14, H 4.17, N 10.39.
a) K. Henrick, P. G. Owston, R. Peters, P. A. Tasker, A. Dell,
Inorg. Chim. Acta 1980, 45, L161–L163; b) H. J. Callot, E.
Schaeffer, R. Cromer, F. Metz, Tetrahedron 1990, 46, 5253–
5262; c) R. W. Doyle, D. Dolphin, J. Chem. Soc., Chem. Com-
mun. 1994, 2463–2464; d) L. Barloy, D. Dolphin, D. Dupre,
T. P. Wijesekera, J. Org. Chem. 1994, 59, 7976–7985; e) M. A.
Faustino, M. G. P. M. S. Neves, M. G. H. Vicente, A. M. S.
Silva, J. A. S. Cavaleiro, Tetrahedron Lett. 1995, 36, 5977–5978;
f) B. Krattinger, D. J. Nurco, K. M. Smith, Chem. Commun.
1998, 757–758; g) Y. V. Ishkov, Russ. J. Org. Chem. 2001, 37,
288–290; h) S. Richeter, C. Jeandon, R. Ruppert, H. J. Callot,
Tetrahedron Lett. 2001, 42, 2103–2106; i) D. Sengupta, B. C.
Robinson, Tetrahedron 2002, 58, 5497–5502; j) H. J. Callot, R.
Ruppert, C. Jeandon, S. Richeter, J. Porphyrins Phthalocyanines
2004, 8, 111–119; k) J. R. McCarthy, M. A. Hyland, C.
Brückner, Org. Biomol. Chem. 2004, 2, 1484–1491; l) C. Jean-
don, R. Ruppert, H. J. Callot, J. Org. Chem. 2006, 71, 3111–
3120; m) S. Richeter, C. Jeandon, J.-P. Gisselbrecht, R. Rup-
pert, H. J. Callot, Inorg. Chem. 2007, 46, 10241–10251; n) S.
Jasinsky, E. A. Ermilov, N. Jux, B. Röder, Eur. J. Org. Chem.
2007, 1075–1084; o) P. J. Chmielewski, J. Maciolek, L. Szteren-
berg, Eur. J. Org. Chem. 2009, 3930–3939.
Nickel Porphyrin 6: A solution of nickel porphyrin 5 (75 mg,
90 μmol) in 1,2-dichlorobenzene (5 mL) was heated at reflux for
30 min. The completion of the reaction was checked by TLC. The
reaction mixture was then poured directly onto a silica gel column.
Elution with dichloromethane (to remove trace amounts of starting
material and apolar side products) followed by dichloromethane/
ethyl acetate (9:1) gave clean nickel porphyrin 6. After crystalli-
zation (dichloromethane/methanol), green compound 6 was iso-
1
lated in 80% yield (50 mg, 72 μmol). H NMR (400 MHz, CDCl3,
25 °C): δ = 8.72 (d, J = 8 Hz, 2 H, cycl. Ph), 8.68 (d, J = 8 Hz, 2
H, cycl. Ph), 8.67 and 8.11 (2 d, J = 4.8 Hz, 4 H, pyrrole), 7.80–
7.86 (m, 4 H, cycl. Ph), 7.76–7.79 (m, 4 H, o-Ph), 7.67 (s, 2 H,
pyrrole), 7.58–7.65 (m, 6 H, m+p-Ph) ppm. UV/Vis (CH2Cl2): λmax
(ε, m–1 cm–1) = 403 (69700), 474 (52700), 695 (16400), 729 (20000),
765 (22600) nm. C44H24N6Ni (695.42): calcd. C 76.00, H 3.48, N
12.09; found C 75.60, H 3.51, N 12.44. Alternatively, starting from
compound 4 (79 mg, 100 μmol), and running the nitration reaction
as before, but skipping the purification of 5 (no chromatography
after the neutralization and washings), simple heating of the crude
reaction mixture at reflux in 1,2-dichloromethane gave compound
6 in 57% yield after filtration of the solution on silica gel (dichloro-
methane followed by 10% ethyl acetate in dichloromethane) and
recrystallization.
[4]
a) N. Kobayashi, M. Numao, R. Kondo, S. I. Nakajima, T.
Osa, Inorg. Chem. 1991, 30, 2241–2244; b) H. Aihara, L. Jaqui-
nod, D. J. Nurco, K. M. Smith, Angew. Chem. 2001, 113, 3547;
Angew. Chem. Int. Ed. 2001, 40, 3439–3441; c) M. Nath, J. C.
Huffman, J. M. Zaleski, Chem. Commun. 2003, 858–859; M.
Nath, J. C. Huffman, J. M. Zaleski, J. Am. Chem. Soc. 2003,
125, 11484–11485; d) H. S. Gill, M. Harmjanz, J. Santamaria,
I. Finger, M. J. Scott, Angew. Chem. 2004, 116, 491; Angew.
Chem. Int. Ed. 2004, 43, 485–490; e) O. Yamane, K. I. Sugiura,
H. Miyasaka, K. Nakamura, T. Fujimoto, K. Nakamuara, T.
Kaneda, Y. Sakata, M. Yamashita, Chem. Lett. 2004, 33, 40–
41; f) S. Fox, R. W. Boyle, Chem. Commun. 2004, 1322–1323;
g) A. N. Cammidge, P. J. Scaife, G. Berber, D. L. Hughes, Org.
Lett. 2005, 7, 3413–3416; h) D.-M. Shen, C. Liu, Q.-Y. Chen,
Chem. Commun. 2005, 4982–4984; D.-M. Shen, C. Liu, Q.-Y.
Chen, J. Org. Chem. 2006, 71, 6508–6511; i) K. Kurotobi, K. S.
Kim, S. B. Noh, D. Kim, A. Osuka, Angew. Chem. 2006, 118,
4048; Angew. Chem. Int. Ed. 2006, 45, 3944–3947; j) E. Hao,
F. R. Fronczek, M. G. H. Vicente, J. Org. Chem. 2006, 71,
1233–1236; k) M. Tanaka, S. Hayashi, S. Eu, T. Umeyama, Y.
Matano, H. Imahori, Chem. Commun. 2007, 2069–2071.
a) C. M. A. Alonso, M. G. P. M. S. Neves, A. M. S. Silva,
J. A. S. Cavaleiro, H. K. Hombrecher, Tetrahedron Lett. 1997,
38, 2757–2758; b) C. K. Johnson, D. Dolphin, Tetrahedron
Lett. 1998, 39, 4753–4756; c) C. M. A. Alonso, M. G. P. M. S.
Neves, A. C. Tome, A. M. S. Silva, J. A. S. Cavaleiro, Eur. J.
Org. Chem. 2004, 3233–3239; d) C. M. A. Alonso, V. I. V.
Serra, M. G. P. M. S. Neves, A. C. Tome, A. M. S. Silva,
F. A. A. Paz, J. A. S. Cavaleiro, Org. Lett. 2007, 9, 2305–2308;
e) P. S. S. Lacerda, A. M. G. Silva, A. C. Tome, M. G. P. M. S.
Neves, A. M. S. Silva, J. A. S. Cavaleiro, A. L. Llamas-Saiz,
Angew. Chem. 2006, 118, 5613; Angew. Chem. Int. Ed. 2006,
45, 5487–5491; f) M. G. Crossley, J. A. McDonald, J. Chem.
Soc. Perkin Trans. 1 1999, 2429–2431; g) K. Jayaraj, A. Gold,
L. M. Ball, P. S. White, Inorg. Chem. 2000, 39, 3652–3664; h)
T. D. Lash, V. Gandhi, J. Org. Chem. 2000, 65, 8020–8026; i)
Porphyrin Free-Base 7: A solution of nickel porphyrin 6 (58 mg,
84 μmol) in trifluoroacetic acid (5 mL) and sulfuric acid (5 mL)
was stirred at room temperature for 3 h. Then the reaction mixture
was poured on ice, and after addition of dichloromethane
(100 mL), neutralized with a saturated sodium hydrogenocarbonate
aqueous solution. The organic phase was washed with water (3ϫ),
dried, and concentrated. Crystallization (dichloromethane/meth-
anol) gave the free base in almost quantitative yield (53 mg,
1
83 μmol). H NMR (400 MHz, C2D2Cl4, 70 °C): δ = 8.98 (m, 2 H,
cycl. Ph), 8.85 (m, 2 H, cycl. Ph), 8.37 (d, J = 4.4 Hz, 2 H, pyrrole),
7.96 (m, 4 H, cycl. Ph), 7.85 (m, 4 H, o-Ph), 7.76 (d, J = 4.4 Hz, 2
H, pyrrole), 7.67 (m, 6 H, m+p-Ph), 7.30 (s, 2 H, pyrrole) ppm.
UV/Vis (CH2Cl2): λmax (ε, m–1 cm–1) = 394 (81000), 435 (49000, sh.),
514 (12600), 619 (17800), 676 (20700), 775 (11800) nm.
C44H26N6·CH2Cl2 (723.65): calcd. C 74.69, H 3.90, N 11.61; found
C 75.13, H 4.09, N 12.30 (due to drying, the solid sample contained
a little bit less than one crystallization molecule of dichloromethane
per porphyrin molecule).
[5]
Supporting Information (see footnote on the first page of this arti-
cle): Detailed experimental procedures with spectroscopic data for
all new compounds (1H NMR, electronic, and mass spectra).
Acknowledgments
We thank Alain Hazemann for elemental analyses, Estelle Motsch
for EI mass spectra, Jennifer Wytko for helpful comments, and the
Eur. J. Org. Chem. 2011, 4098–4102
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4101