macrolactone structure incorporates three stereogenic cen-
ters, two of which are part of the macrocycle, and an
induced chiral biaryl axis, representing a significant syn-
thetic challenge.
We became fascinated with the idea of testing this
biomimetic synthesis to explore the possibility of emulat-
ing this oxidative pathway in the laboratory. Herein, we
report the synthesis of decinine (1) using a VOF3-mediated
nonphenolic oxidative biaryl coupling reaction11 for the
formation of the 12-membered ring. The reaction pro-
ceeded in the presence of an excess of TFA12 and enabled
the unprecedented coupling of a biaryl substrate contain-
ing a quinolizidine subunit.
Lasubine II (8) is an essential fragment in many bioac-
tive alkaloids, and studies aimed at developing concise and
convergent synthetic approaches to the compound are an
ongoing, with many unique methods having already been
developed in this area.14
The construction of biaryl compounds, particularly
unsymmetrical and axially chiral biaryls, continues to
represent a challenging goal in organic synthesis.7
Although Lythraceae alkaloids can be synthesized using
both acid-catalyzed lactonization and ring closing meta-
thesis (RCM) reactions as the key steps in the formation of
their macrocyclic rings,8 earlier efforts to affect the same
transformation using the oxidative biaryl coupling for the
formation of alkaloids failed to afford any annulated
product.9
Retrosynthetically, it was anticipated that the macro-
cyclic ring of decinine (1) could be constructed via the
oxidative biaryl coupling of ester 6, which could itself be
obtained via the condensation reaction of acrylic acid 7
and lasubine II (8) (Scheme 2). It was also envisaged that
the chirality already present in lasubine II (8) would
determine the steric course of the coupling reaction, pro-
viding the desired axial chirality in decinine (1) through a
chirality transfer13 process.
Scheme 1. Biosynthetic Analysis of Quinolizidine Alkaloids
Scheme 2. Retrosynthetic Analysis
Biosynthetically, compounds 1ꢀ3 can be traced back to
phenol 4 (Scheme 1), which presumably undergoes an
oxidative biaryl coupling reaction, followed by a series of
functionalizations to afford quinolizidine alkaloids, such
as 1ꢀ3.10 It is therefore conceivable, for example, that
decinine (1) could be derived from ester 4 via an initial
intramolecular oxidative biaryl coupling to afford the
annulated product 5, followed by a 1,4-reduction and
regioselective dimethylation.10d
The transition-metal-catalyzed cyclization of alkynes is
one of the most powerful methods for the construction of
(7) For reviews on biaryl synthesis, see: (a) Shimizu, H.; Nagasaki, I.;
Saito, T. Tetrahedron 2005, 61, 5405. (b) Bringmann, G.; Mortimer,
A. J. P.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew.
ꢀ
Chem., Int. Ed. 2005, 44, 5384. (c) Hassan, J.; Sevignon, M.; Gozzi, C.;
(11) (a) Damon, R. E.; Schlessinger, R. H.; Blount, J. F. J. Org.
Chem. 1976, 41, 3772. (b) Feldman, K. S.; Ensel, S. M.; Minard, R. D.
J. Am. Chem. Soc. 1995, 116, 1742. (c) Evans, D. A.; Dinsmore, C. J.;
Evrard, D. A.; DeVries, K. M. J. Am. Chem. Soc. 1993, 115, 6426. (d)
Evans, D. A.; Dinsmore, C. J.; Ratz, A. M.; Evrard, D. A.; Barrow, J. C.
J. Am. Chem. Soc. 1997, 119, 3417.
(12) Lewis acids and the salts of HCl or HClO4 were utilized to
protect tertiary amines during the oxidation. Schwartz, M.; Rose, B.;
Vishnurajjala, B. J. Am. Chem. Soc. 1973, 95, 612.
(13) (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley:
New York, 1994. (b) Rosini, C.; Franzini, L.; Raffaelli, A.; Salvadori, P.
Synthesis 1992, 503. (c) Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92,
1007. (d) Narasaka, K. Synthesis 1991, 1. (e) Bao, J.; Wulff, W. D.;
Rheingold, A. L. J. Am. Chem. Soc. 1993, 115, 3814. (f) Lemieux, R. P.
Acc. Chem. Res. 2001, 34, 845.
(14) (a) Lipshutz, B. H.; Kayser, F.; Liu, Z.-P. Angew. Chem., Int. Ed.
Engl. 1994, 33, 1842. (b) Rawal, V. H.; Florjancic, A. S.; Singh, S. P.
Tetrahedron Lett. 1994, 35, 8985. (c) Sugimura, T.; Yamada, H.; Inoue,
S.; Tai, A. Tetrahedron: Asymmetry 1997, 8, 649. (d) Lin, G.-Q.; Zhong,
M. Tetrahedron: Asymmetry 1997, 8, 1369. (e) Vorogushin, A. V.; Wulff,
W. D.; Hansen, H.-J. J. Am. Chem. Soc. 2002, 124, 6512. (f) Layton,
M. E.; Morales, C. A.; Shair, M. D. J. Am. Chem. Soc. 2002, 124, 773.
Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359. (e) Bolm, C.;
Hildebrand, J. P.; Muz, K.; Hermanns, N. Angew. Chem., Int. Ed. 2001,
40, 3284.
(8) (a) Blank, B.; Vaiday, P. D. J. Chem. Eng. Data 1971, 16, 254. (b)
Montaudo, G.; Finocchiaro, P.; Caccamese, S.; Bottino, F. J. Chem.
Eng. Data 1971, 16, 249. (c) Wrobel, J. T.; Golebiewski, W. M. Tetra-
hedron Lett. 1973, 14, 4293. (d) Hanaoka, M.; Ogawa, N.; Arata, Y.
Tetrahedron Lett. 1973, 14, 2355. (e) Loev, B.; Van Hoeven, H. Tetra-
hedron Lett. 1974, 15, 1101. (f) Loev, B.; Lantos, I. Tetrahedron Lett.
1975, 16, 201. (g) Lantos, I.; Razgaitis, C.; Van Hoeven, H.; Loev, B.
J. Org. Chem. 1977, 42, 228. (h) Hart, D. J.; Kanai, K. J. Org. Chem.
1982, 47, 1556. (i) Chausset-Boissarie, L.; Arvai, R.; Cumming, G. R.;
Besnard, C.; Kundig, E. P. Chem. Commun. 2010, 46, 6264.
(9) (a) Rosazza, J. P.; Bobbitt, J. M.; Schwarting, A. E. J. Org. Chem.
1970, 35, 2564. (b) Quick, J.; Ramachandra, R. Tetrahedron 1980, 36,
1301.
(10) (a) Hedges, S. H.; Herbert, R. B.; Wormald, P. C. J. Chem. Soc.,
Chem. Commun. 1983, 145. (b) Herbert, R. B.; Jackson, F. B.; Nicolson,
I. J. Chem. Soc., Chem. Commun. 1984, 825. (c) Rother, A. J. Nat. Prod.
1985, 48, 33. (d) Hedges, S. H.; Herbert, R. B.; Wormald, P. C. J. Nat.
Prod. 1993, 56, 1259.
Org. Lett., Vol. 14, No. 14, 2012
3713