416
GADZHILY, ALIEV
Table 1. TLC data and UV, IR, and 1H NMR spectra of isoxazoles IIa IIg, IIIa, IIIb, IIId, IIIf, IVa, IVb, and IVe
Comp.
no.
UV spectrum (MeOH)
max, nm ( )
1
Rfa
IR spectrum, , cm
1H NMR spectrum, , ppm
IIa
IIb
IIc
0.67
0.66
0.64
0.57
0.68
0.54
0.50
0.60
0.57
0.50
0.51
222 (4550)
224 (4560)
223 (4170)
220 (4480)
240 (9530)
235 (9200)
250 (1170)
3148 ( C H), 1614 (C C, C N), 2.11 s (3H, CH3), 450 s (2H, CH2),
720 (C Cl) 6.09 s (1H, CH)
3144 ( C H), 1608 (C C, C N), 1.19 t and 2.55 q (5H, CH3CH2), 3.45 s
753 (C Cl)
(2H, CH2), 5.95 s (1H, CH)
3140 ( C H), 1610 (C C, C N),
754 (C Cl)
IId
IIe
3142 ( C H), 1625 (C C, C N), 1.25 d and 3.20 m [7H, CH(CH3)2],
750 (C Cl) 4.54 s (2H, CH2), 5.97 s (1H, CH)
3150 ( C H), 1605 (C C, C N), 4.56 s (2H, CH2), 6.5 s (1H, CH),
756 (C Cl)
7.35 m and 7.70 m (5H, Harom)
IIf
3157 ( C H), 1648 (C C, C N),
775 (C Cl)
IIg
IIIa
IIIb
IIId
IIIf
3156 ( C H), 1620 (C C, C N),
756 (C Cl)
3136 ( C H), 2160 (NCS), 1605 1.95 s (3H, CH3), 4.57 s (2H, CH2),
(C C, C N)
6.30 s (1H, CH)
245 (1098)
225 (4760)
224 (9630)
3145 ( C H), 2150 (NCS), 1618
(C C, C N)
3150 ( C H), 2160 (NCS), 1620 1.25 d and 3.30 m [7H, CH(CH3)2],
(C C, C N) 3.60 s (2H, CH2), 6.10 s (1H, CH)
3140 ( C H), 2160 (NCS), 1640 2.35 s (3H, CH3), 4.08 s (2H, CH2),
(C C, C N) 6.50 s (1H, CH), 7.18 m and
7.60 m (5H, Harom
)
IVa
IVb
IVe
0.63
0.61
0.54
221 (4420)
230 (4520)
250 (7500)
3130 ( C H), 1605 (C C, C N) 1.19 s (3H, CH3), 2.96 s (6H, NCH3),
3.55 s (2H, CH2N), 5.96 s (1H,
CH)
3145 ( C H), 1640 (C C, C N) 1.15 t and 2.55 q (5H, CH3CH2), 2.15 s
(6H, NCH3), 3.45 s (2H, NCH2),
5.95 s (1H, CH)
3138 ( C H), 1603 (C C, C N) 2.18 s (6H, NCH3), 3.60 s (2H, CH2),
6.20 s (1H, CH), 7.00 m and
7.35 m (5H, Harom
)
a
Eluent methanol chloroform.
Therefore, hydroxylamine reacts only at the carbonyl
carbon atom with subsequent cyclization.
The structure of products II IV was confirmed by
the IR, H NMR, and UV spectra and (in some cases)
by independent synthesis. In the IR spectra of II IV
1
The chlorine atom in chloromethylisoxazoles II is
very labile, and it can readily be replaced by various
nucleophiles. By reaction of compounds II with
2 equiv of ammonium thiocyanate we obtained
3-alkyl(aryl)-5-isothiocyanatomethylisoxazoles III in
70 89% yield. Treatment of isoxazoles II with
3 equiv of dimethylamine resulted in formation of
65 90% of 3-alkyl(aryl)-5-dimethylaminomethyl-
isoxazoles IV (Scheme 1).
we observed absorption bands typical of isoxazole ring
1
and substituents in position 5 (Table 1). The H NMR
spectra of II IV contained singlets from the 4-H
proton at 6.10 6.50 ppm, 5-CH2 protons at 4.45
4.56 ppm, dimethylamino group, and protons of the
alkyl or aryl substituent on C3 (Table 1). The data
of UV spectroscopy are consistent with the presence
of heteroaromatic isoxazole ring (Table 1). 3-Alkyl-
RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 38 No. 3 2002