90
HASANI AND NIKOEE
2.5
2
that the DDQ forms the CT complex of 1:1 stoichiom-
etry with antipyrine in all solvents studied. The spectro-
scopic and thermodynamic parameters of the complex
were found to be highly solvent dependent.
1
2
3
1.5
1
4
The authors would like to thank Dr. Saeid Azizian for helpful
discussions.
0.5
0
BIBLIOGRAPHY
3.2
3.3
3.4
3.5
3.6
1. Haga, N.; Nakajima, H.; Takayanagi, H.; Tokumaru, K.
J Org Chem 1998, 63, 5372–5384.
1000/T
2. Mulliken, R. S.; Person, W. B. Molecular Complexes:
A Lecture and Reprint Volume; Wiley: New York,
1969.
3. Frey, J. E.; Andrews, A. M.; Ankoviac, D. G.; Beaman,
D. N.; Dupont, L. E.; Elsner, T. E.; Lang, S. R.; Zwart,
M. A. O.; Seagle, R. E.; Torreano, L. A. J Org Chem
1990, 55, 606–624.
Figure 9 Van’t Hoff plots of ln K vs. 1/T for the antipyrine–
DDQ system in AN (1), 1,2-DCE (2), DCM (3), and chloro-
form (4) solutions.
(Fig. 9). The values of ꢀH◦ and ꢀS◦ were calculated
from the slope and intercept of the linear Van’t Hoff
plots, respectively, and are given in Table IV. These
values show that complexation is exothermic and en-
thalpy driven with a negative entropic contribution. The
negative enthalpies show that the complex formation is
spontaneous, whereas negative entropy indicates a de-
crease in the degree of freedom of the components upon
complexation. The values of ꢀHo and ꢀSo were used
to compute ꢀGo from the Gibbs free energy change
relation: ꢀGo = ꢀHo – T ꢀSo. The negative values
of ꢀGo at all temperatures confirm the feasibility of
the process and also indicate the spontaneous nature
of complexation. The change of the standard free en-
ergy decreases with increasing temperature regardless
of the nature of the solvent. The decrease in the value
of –ꢀGo with increasing temperature indicates that the
complexation is less favorable at higher temperatures.
Table IV summarizes the values of these thermody-
namic properties. There is not a correlation between
the value of ꢀHo and stability constants for molecular
complexes. It seems that the weight of ꢀSo on the KDA
values is higher than those of ꢀHo. The free energy
of the complex increases in absolute value in the order
AN > 1,2-DCE > DCM > chloroform. This fact in-
dicates that the thermodynamic stability of the species
increases with the solvent polarity.
4. Martindale, W. The ExtraPharmacopeia, 30th ed.; The
Pharmaceutical Press. London, 1993.
5. Taboada, P.; Gutierrez-Pichel, M.; Barbosa, S.; Attwood,
D.; Mosquera, V. Phys Chem Chem Phys 2003, 5, 703–
709.
6. Webb, N. E.; Thompson, C. C. J Pharm Sci 1978, 67,
165–168.
7. Pernarowski, K. J Pharm Sci 1971, 60, 196–200.
8. Pernarowski, K. J Pharm Sci 1971, 60, 720–724.
9. Golemi, D.; Maveyraud, L.; Vakulenko, S.; Samama, P.;
Mobashery, S. PANS 2001, 98, 14280–14285.
10. Morton R. A. Biochemistry of Quinones; Academic
Press: London, 1965.
11. Middleton, W. J.; Little, E. L.; Coffman, D. D.; Engel-
hardt, V. A. J Am Chem Soc 1958, 80, 2795–2806.
12. Matsuzaki, S.; Mitsuishi, T.; Toyoda, K. Chem Phys Lett
1982, 91, 296–298.
13. Miller, J. S.; Krusic, P. J.; Dixon, D. A.; Reiff, W. M.;
Zhang, J. H.;. Anderson, E. C.; Epstein, A. J. J Am Chem
Soc 1986, 108, 4459–4466.
14. Hasani, M.; Shamsipur, M. J Chem Soc, Perkin Trans 2
1998, 1277–1281.
15. Abd-Alla, E. M. Can J Appl Spectrosc 1993, 38, 88–93.
16. Nogami, T.; Yoshihara, K.; Hosoya, H.; Nagakura, S. J
Phys Chem 1969, 73, 2670–2675.
17. Lautenberger, W. J.; Miller, J. G. J Phys Chem 1970, 74,
2722–2724.
18. Nogami, T.; Yamaoka, T.; Yoshihara K.; Nagakura, S.
Bull Chem Soc Jpn 1971, 44, 380–386.
19. Kouno, K.; Ogawa, C.; Shimomura, Y.; Yano, H.; Ueda,
Y. Chem Pharm Bull 1981, 29, 301–307.
20. Hasani, M.; Shamsipur, M. Spectrochim Acta A 2005,
61, 815–821.
21. Frost, A. A.; Pearson, R. G. Kinetics and Mechanism,
2nd ed.; Wiley, New York, 1961.
CONCLUSION
In this work, the EDA complex formation of DDQ as
a model for biologically important quinones with an-
tipyrine, a drug, has been studied in different solvents.
From the foregoing discussion, it may be concluded
22. Nicely, V. A.; Dye, J. L. J Chem Educ 1971, 48, 443–
447.
International Journal of Chemical Kinetics DOI 10.1002/kin.20745