Organic Letters
Letter
Azobenzene photoswitching without ultraviolet light. J. Am. Chem. Soc.
2011, 133, 19684−19687.
M.; De Winter, J.; Cornil, J.; Gerbaux, P.; Mayor, M.; Samorì, P. A New
Class of Rigid Multi(azobenzene) Switches Featuring Electronic
Decoupling: Unravelling the Isomerization in Individual Photo-
chromes. J. Am. Chem. Soc. 2019, 141, 9273−9283.
(6) (a) Broichhagen, J.; Frank, J. A.; Trauner, D. A Roadmap to
Success in Photopharmacology. Acc. Chem. Res. 2015, 48, 1947−1960.
(b) Morstein, J.; Awale, M.; Reymond, J. L.; Trauner, D. Mapping the
Azolog Space Enables the Optical Control of New Biological Targets.
ACS Cent. Sci. 2019, 5, 607−618.
(19) (a) Shinkai, S.; Matsuo, K.; Harada, A.; Manabe, O. Photocontrol
of micellar catalyses. J. Chem. Soc., Perkin Trans. 2 1982, 10, 1261−
1265. (b) Fujiwara, H.; Yonezawa, Y. Photoelectric response of a black
lipid membrane containing an amphiphilic azobenzene derivative.
Nature 1991, 351, 724. (c) Effing, J. J.; Kwak, J. C. Photoswitchable
phase separation in hydrophobically modified poly (acrylamide)/
surfactant systems. Angew. Chem., Int. Ed. Engl. 1995, 34, 88−90.
(d) Sakai, H.; Matsumura, A.; Yokoyama, S.; Saji, T.; Abe, M.
Photochemical switching of vesicle formation using an azobenzene-
modified surfactant. J. Phys. Chem. B 1999, 103, 10737−10740. (e) Liu,
X. M.; Yang, B.; Wang, Y. L.; Wang, J. Y. New nanoscale pulsatile drug
delivery system. Chem. Mater. 2005, 17, 2792−2795. (f) Sakai, H.;
Orihara, Y.; Kodashima, H.; Matsumura, A.; Ohkubo, T.; Tsuchiya, K.;
Abe, M. Photoinduced reversible change of fluid viscosity. J. Am. Chem.
Soc. 2005, 127, 13454−13455. (g) Wang, Y.; Ma, N.; Wang, Z.; Zhang,
X. Photocontrolled reversible supramolecular assemblies of an
azobenzene-containing surfactant with α-cyclodextrin. Angew. Chem.,
Int. Ed. 2007, 46, 2823−2826. (h) Tabor, R. F.; Tan, D. D.; Han, S. S.;
Young, S. A.; Seeger, Z. L.; Pottage, M. J.; Garvey, C. J.; Wilkinson, B. L.
Reversible pH- and photocontrollable carbohydrate-based surfactants.
Chem. - Eur. J. 2014, 20, 13881−13884. (i) Tabor, R. F.; Pottage, M. J.;
Garvey, C. J.; Wilkinson, B. L. Light-induced structural evolution of
photoswitchable carbohydrate-based surfactant micelles. Chem.
Commun. (Cambridge, U. K.) 2015, 51, 5509−5512. (j) McCoy, T.
M.; Liu, A. C.; Tabor, R. F. Light-controllable dispersion and recovery
of graphenes and carbon nanotubes using a photo-switchable
surfactant. Nanoscale 2016, 8, 6969−6974. (k) Adam, M. K.; Hu, Y.;
Poisson, J. S.; Pottage, M. J.; Ben, R. N.; Wilkinson, B. L.
Photoswitchable carbohydrate-based fluorosurfactants as tuneable ice
recrystallization inhibitors. Carbohydr. Res. 2017, 439, 1−8. (l) Schnur-
bus, M.; Stricker, L.; Ravoo, B. J.; Braunschweig, B. Smart Air-Water
Interfaces with Arylazopyrazole Surfactants and Their Role in
Photoresponsive Aqueous Foam. Langmuir 2018, 34, 6028−6035.
(m) Vialetto, J.; Anyfantakis, M.; Rudiuk, S.; Morel, M.; Baigl, D.
Photoswitchable Dissipative Two-Dimensional Colloidal Crystals.
Angew. Chem., Int. Ed. 2019, 58, 9145−9149.
̌
(7) (a) Ganguly, T.; Kasten, B. B.; Bucar, D. K.; MacGillivray, L. R.;
Berkman, C. E.; Benny, P. D. The hydrazide/hydrazone click reaction
as a biomolecule labeling strategy for M(CO)3 (M = Re, (99m)Tc)
radiopharmaceuticals. Chem. Commun. (Cambridge, U. K.) 2011, 47,
12846−12848. (b) Prescher, J. A.; Bertozzi, C. Chemistry in living
systems. Nat. Chem. Biol. 2005, 1, 13−21.
(8) Molander, G. A.; Cavalcanti, L. N. Nitrosation of Aryl and
Heteroaryltrifluoroborates with Nitrosonium Tetrafluoroborate. J. Org.
Chem. 2012, 77, 4402−4413.
(9) (a) Haddadin, M. J.; Conrad, W. E. C.; Kurth, M. J. The Davis−
Beirut Reaction: A Novel Entry into 2H-indazoles and Indazolones.
Recent Biological Activity of Indazoles. Mini-Rev. Med. Chem. 2012, 12,
1293−1300. (b) Zhu, J. S.; Kraemer, N.; Li, C. J.; Haddadin, M. J.;
Kurth, M. J. Photochemical Preparation of 1,2-Dihydro-3H-indazol-3-
ones in Aqueous Solvent at Room Temperature. J. Org. Chem. 2018, 83,
15493−15498. (c) Zhu, J. S.; Kraemer, N.; Shatskikh, M. E.; Li, C. J.;
Son, J.-H.; Haddadin, M. J.; Tantillo, D. J.; Kurth, M. J. N−N Bond
Formation between Primary Amines and Nitrosos: Direct Synthesis of
2-Substituted Indazolones with Mechanistic Insights. Org. Lett. 2018,
20, 4736−4739.
(10) (a) Merino, E. Synthesis of azobenzenes: the coloured pieces of
molecular materials. Chem. Soc. Rev. 2011, 40, 3835−3853. (b) Davey,
M. H.; Lee, V. Y.; Miller, R. D.; Marks, T. J. Synthesis of Aryl Nitroso
Derivatives by tert-Butyl Hypochlorite Oxidation in Homogeneous
Media. Intermediates for the Preparation of High-Hyperpolarizability
Chromophore Skeletons. J. Org. Chem. 1999, 64, 4976−4979.
(11) Bordwell, F. G.; Algrim, D.; Vanier, N. R. Acidities of anilines and
toluenes. J. Org. Chem. 1977, 42, 1817−1819.
(12) Zhu, J. S.; Kraemer, N.; Shatskikh, M. E.; Li, C. J.; Son, J. H.;
Haddadin, M. J.; Tantillo, D. J.; Kurth, M. J. N-N Bond Formation
between Primary Amines and Nitrosos: Direct Synthesis of 2-
Substituted Indazolones with Mechanistic Insights. Org. Lett. 2018,
20, 4736−4739.
(13) Wan, P.; Yates, K. Photoredox chemistry of nitrobenzyl alcohols
in aqueous solution. Acid and base catalysis of reaction. Can. J. Chem.
1986, 64, 2076−2086.
(14) Banghart, M. R.; Trauner, D. A 1H NMR assay for measuring the
photostationary States of photoswitchable ligands. Methods Mol. Biol.
2013, 995, 107−120.
(15) Weston, C. E.; Richardson, R. D.; Haycock, P. R.; White, A. J.;
Fuchter, M. J. Arylazopyrazoles: azoheteroarene photoswitches offering
quantitative isomerization and long thermal half-lives. J. Am. Chem. Soc.
2014, 136, 11878−11881.
(16) Stricker, L.; Fritz, E. C.; Peterlechner, M.; Doltsinis, N. L.; Ravoo,
B. J. Arylazopyrazoles as Light-Responsive Molecular Switches in
Cyclodextrin-Based Supramolecular Systems. J. Am. Chem. Soc. 2016,
138, 4547−4554.
̌
̌
(17) van Dijken, D. J.; Kovarícek, P.; Ihrig, S. P.; Hecht, S.
Acylhydrazones as Widely Tunable Photoswitches. J. Am. Chem. Soc.
2015, 137, 14982−14991.
́
(18) (a) Bleger, D.; Dokic, J.; Peters, M. V.; Grubert, L.; Saalfrank, P.;
Hecht, S. Electronic Decoupling Approach to Quantitative Photo-
switching in Linear Multiazobenzene Architectures. J. Phys. Chem. B
2011, 115, 9930−9940. (b) Cisnetti, F.; Ballardini, R.; Credi, A.;
Gandolfi, M. T.; Masiero, S.; Negri, F.; Pieraccini, S.; Spada, G. P.
Photochemical and Electronic Properties of Conjugated Bis(Azo)
Compounds: an Experimental and Computational Study. Chem. - Eur. J.
́
2004, 10, 2011−2021. (c) Bleger, D.; Liebig, T.; Thiermann, R.;
Maskos, M.; Rabe, J. P.; Hecht, S. Light-Orchestrated Macromolecular
″Accordions′′: Reversible Photoinduced Shrinking of Rigid-Rod
Polymers. Angew. Chem., Int. Ed. 2011, 50, 12559−12563. (d) Galanti,
́
̌
A.; Santoro, J.; Mannancherry, R.; Duez, Q.; Diez-Cabanes, V.; Valasek,
F
Org. Lett. XXXX, XXX, XXX−XXX