Synthesis of Destomic Acid and Lincosamine Derivatives
J . Org. Chem., Vol. 61, No. 2, 1996 585
ester 5.2 (8.46 g, 91%) as a colorless oil: [R]D +31.2 (1.30,
and 242 mg (1.06 mmol) of H5IO6 affording lactol 5.8 (504 mg,
90%) as a solid foam: mp 55-61 °C, [R]D +48.9 (c 0.97, CHCl3);
IR 3445, 1673. Anal. Calcd for C28H57NO8Si: C; 56.82, H;
9.75, N; 2.37. Found: C; 56.85, H; 9.75, N; 2.43.
1
CHCl3), IR 1703, 1660; H NMR (DMSO-d6, 85 °C) 1.22 (3 H,
d, J ) 2.9 Hz), 1.23 (3 H, t, J ) 7.0 Hz), 1.38 (9 H, s), 1.49 (3
H, s). 1.53 (3 H, s), 3.80-4.00 (2 H, m), 4.17 (2 H, q, J ) 7.0
Hz), 5.95 (1 H, d, J ) 15.7 Hz), 6.69 (1 H, dd, J ) 7.6, 15.7
Hz). Anal. Calcd for C16H27NO5: C; 61.32, H; 8.68, N; 4.47.
Found: C; 61.03, H; 8.58, N; 4.44.
(4S,5S)-3-(ter t-Bu toxyca r bon yl)-2,2-d im eth yl-4-[(E)-3-
h yd r oxy-1-p r op en yl]-5-m eth yloxa zolid in e (5.3). The pro-
cedure described above for alcohol 2.6 was employed with 8.03
g (25.6 mmol) of ester 5.2 and 57.0 mL (57.0 mmol) of 1.0 M
DIBAL-H in hexanes affording alcohol 5.3 (8.46 g, 91%) as a
colorless oil: [R]D -6.6 (c 1.23, CHCl3); IR 3441, 1699; 1H NMR
(DMSO-d6, 85 °C): 1.20 (3 H, d, J ) 6.0 Hz), 1.39 (9 H, s),
1.45 (3 H, s), 1.51 (3 H, s), 3.70 (1 H, t, J ) 7.7 Hz), 3.78-3.86
(1 H, m), 3.97 (2 H, td, J ) 1.2, 5.1 Hz), 4.45 (1 H, td, J ) 1.1,
5.4 Hz), 5.49 (1 H, tdd, J ) 1.6, 7.7, 15.4 Hz), 5.68 (1 H, tdd,
J ) 0.6, 4.9, 15.4 Hz). Anal. Calcd for C14H25NO4: C; 61.97,
H; 9.29, N; 5.16. Found: C; 61.88, H; 9.30, N; 5.09.
6-[(ter t-Bu toxyca r bon yl)a m in o]-6,8-d id eoxy-1,2:3,4-d i-
O-isop r op ylid en e-D-th r eo-r-D-ga la cto-octop yr a n ose (6.3).
The procedure described above for pyranose 3.4 was employed
with 1.10 g (1.86 mmol) of lactol 5.8, 4.7 mL (4.7 mmol) of
1.0M TBAF in THF and 0.28 mL (4.90 mmol) of HOAc
affording pyranoside 5.9 (670 mg, 99%) of a solid foam: mp
95-100 °C. A 388-mg sample of this material was heated with
4.0 mL of 9:1 HOAc-H2O as described above affording 388 mg
of crude lactol 6.1 which was treated as described above for
diacetonide 3.6 with 5.0 mL of acetone, 480 mg of CuSO4, and
0.02 mL of H2SO4 affording diacetonide 6.3 (126 mg, 26%) and
oxazolidine 6.2 (161 mg, 30%) as a white solid.
6.2: mp 127-129 °C; [R]D +4.0 (c 1.08, CHCl3); IR (CCl4)
1
1694; H NMR δ 1.30 (6 H, s), 1.31 (3 H, d, J ) 6.3 Hz), 1.42
(3 H, s), 1.47 (12 H, s), 1.53 (3 H, s), 1.59 (3 H, s), 3.86 (1 H,
bs), 4.10-4.30 (2 H, m), 4.27 (1 H, dd, J ) 2.2, 4.9 Hz), 4.58 (1
H, dd, J ) 2.1, 3.9 Hz), 4.65 (1 H, dq, J ) 2.3, 6.3 Hz), 5.58 (1
H, d, J ) 5.0 Hz). Anal. Calcd for C22H37NO8: C; 59.58, H;
8.41, N; 3.16. Found: C; 59.66, H; 8.37, N; 3.10.
(4S,5S)-3-(ter t-Bu toxyca r bon yl)-2,2-d im eth yl-4-[(E)-2-
for m ylvin yl]-5-m eth yl oxa zolid in e (5.4). The procedure
described above for aldehyde 2.7 was employed with 2.79 g
(10.3 mmol) of alcohol 5.3, 1.0 mL (11.5 mmol) of oxalyl
chloride, 1.6 mL (22.8 mmol) of DMSO, and 7.1 mL (50.9 mmol)
of Et3N affording aldehyde 5.4 (8.46 g, 91%) as a colorless oil:
6.3: [R]D -28.8 (c 1.03, CHCl3); IR (CCl4) 3447, 1705; 1H
NMR δ 1.16 (3 H, d, J ) 6.4 Hz), 1.31 (3 H, s), 1.33 (3 H, s),
1.43 (9 H, s), 1.45 (3 H, s), 1.49 (3 H, s), 2.60 (1 H, bs), 3.70-
3.75 (1 H, m), 3.89 (1H, d, J ) 5.4 Hz), 4.29 (1 H, dd, J ) 2.2,
4.9 Hz), 4.32 (1 H, dd, J ) 1.0, 8.1 Hz), 4.58 (1 H, dd, J ) 1.8,
7.8 Hz), 5.16 (1 H, d, J ) 9.2 Hz), 5.53 (1 H, d, J ) 5.0 Hz).
A solution of the above oxazolidine 6.2 (154 mg, 0.35 mmol)
and TsOH‚H2O (7 mg, 0.04 mmol) in MeOH (2 mL) was stirred
for 8 h, neutralized with Et3N, and then concentrated under
reduced pressure. Purification by flash chromatography on
silica gel (3:2 Et2O-hexanes) gave additional diacetonide 6.3
(112 mg, 80%).
1
[R]D +21.0 (c 1.03, CHCl3); IR 1694; H NMR (DMSO-d6, 85
°C): 1.25 (3 H, d, J ) 6.0 Hz), 1.35 (9 H, s), 1.50 (3 H, s), 1.55
(3 H, s), 3.80-4.06 (2 H, m), 6.16 (1 H, ddd, J ) 0.8, 7.7, 15.6
Hz), 6.88 (1 H, dd, J ) 7.5, 15.6 Hz), 9.59 (1 H, d, J ) 7.5 Hz).
Anal. Calcd for C14H23NO4: C; 62.43, H; 8.61, N; 5.20.
Found: C; 62.29, H; 8.67, N; 5.10.
(4S ,5S )-3-(t er t -B u t o x y c a r b o n y l)-2,2-d i m e t h y l-4-
[(1E,5E,3S,4S)-4-[ter t-bu tyld im eth ylsilyl)oxy]-3-h yd r oxy-
1,5-h ep ta d ien yl]-5-m eth yloxa zolid in e (5.5). The proce-
dure described above for alcohol 2.9 was employed with 557
mg (2.07 mmol) of aldehyde 5.4, 1.28 g (2.69 mmol) of (R)-
stannane 2.8, and 0.33 mL (2.68 mmol) of BF3‚OEt2 affording
alcohol 5.5 (772 mg, 82%) as a colorless oil: [R]D -0.3 (c 1.18,
Ester 6.4. To a suspension of alcohol 6.2 (108 mg, 0.27
mmol), Ph3P (105 mg, 0.40 mmol), and p-nitrobenzoic acid (68
mg, 0.40 mmol) in benzene (2 mL) was added 0.06 mL (0.04
mmol) of DEAD. After 48 h, the reaction mixture was
concentrated under reduced pressure. The residue was dis-
solved in Et2O (0.3 mL) and after 30 min, 0.15 mL of hexanes
was added. The resulting precipitate was filtered on Celite
and washed with a 1:1 mixture of hexanes-Et2O (1.4 mL). The
filtrate was concentrated under reduced pressure and the
residue was purified by flash chromatography on silica gel
(first column: 1:1, hexanes-Et2O, second column: 3:2, hex-
anes-EtOAc) affording 101 mg (74%) of a glassy solid: mp
86-88 °C; [R]D -50.3 (c 0.93, CHCl3); IR 3254, 3137, 1725,
1699, 1530, 1373; 1H NMR δ 1.31 (3 H, s), 1.33 (3 H, s), 1.38-
1.44 (15 H, m), 1.48 (3 H, s), 3.60-3.85 (2 H, m), 4.30-4.50 (3
H, m), 4.58 (1 H, dd, J ) 2.3, 7.9 Hz), 5.26 (1 H, bd, J ) 8.1
Hz), 5.44 (1 H, dq, J ) 5.8, 6.0 Hz), 5.54 (1 H, d, J ) 5.2 Hz),
8.18-8.25 (4 H, m). Anal. Calcd for C26H36N2O11: C; 56.56,
H; 8.24, N; 3.47. Found: C; 56.32, H; 8.08, N; 3.47.
6-[(ter t-Bu toxyca r bon yl)a m in o]-6,8-d id eoxy-1,2:3,4-d i-
O-isop r op ylid en e-D-er yth r o-r-D-ga la cto-oct op yr a n ose
(6.5). A solution of ester 6.4 (91 mg, 0.16 mmol) and KCN (6
mg, 0.08 mmol) in MeOH (1 mL) was stirred for 20 h and then
concentrated under reduced pressure. Purification by flash
chromatography on silica gel (3:2, hexanes-EtOAc) gave
alcohol 6.5 (59 mg, 89%) as a white solid: mp 48-50 °C; [R]D
-41.0 (c 0.80, CHCl3); IR 3431, 1703;1H NMR δ 1.24 (3 H, d,
J ) 6.7 Hz), 1.32 (3 H, s), 1.34 (3 H, s), 1.43 (9 H, s), 1.48 (3
H, s), 1.52 (3 H, s), 2.82 (1 H, bs), 3.75-3.83 (1 H, m), 4.02 (2
H, bs), 4.29 (1 H, dd, J ) 2.3, 5.0 Hz), 4.39 (1 H, dd, J ) 1.2,
7.9 Hz), 4.60 (1 H, dd, J ) 2.5, 8.0 Hz), 5.22 (1 H, bs), 5.53 (1
H, d, J ) 5.0 Hz).
1
CHCl3); IR 3459, 1700; H NMR (400 MHz), δ 0.01 (3 H, s),
0.04 (3 H, s), 0.87 (9 H, s), 1.22 (3 H, d, J ) 5.8 Hz), 1.41 (9 H,
s), 1.48 (3 H, s), 1.57 (3 H, s), 1.66 (3 H, dd, J ) 1.4, 6.5 Hz),
2.69 (1 H, bs), 3.65-3.85 (4 H, m), 5.30-5.70 (4 H, m). Anal.
Calcd for C24H45NO5Si: C; 63.26, H; 9.95, N; 3.07. Found: C;
63.18, H; 10.03, N; 2.99.
(4S ,5S )-3-(t er t -B u t o x y c a r b o n y l)-2,2-d i m e t h y l-4-
[(1E,5E,3S,4S)-3,4-bis-[(ter t-bu tyld im eth ylsilyl)oxy]-1,5-
h ep ta d ien yl]-5-m eth yloxa zolid in e (5.6). The procedure
described above for disilyl ether 2.10 was employed with 780
mg (1.71 mmol) of alcohol 5.5, 0.44 mL (3.78 mmol) of 2,6-
lutidine, and 0.69 mL (3.00 mmol) of TBSOTf affording disilyl
ether 5.6 (911 mg, 94%) as a colorless oil: [R]D -8.9 (c 1.05,
CHCl3); IR 1704; 1H NMR (400 MHz) δ -0.01 (3 H, s), 0.01 (3
H, s), 0.02 (3 H, s), 0.04 (3 H, s), 0.86 (9 H, s), 0.87 (9 H, s),
1.24 (3 H, d, J ) 5.8 Hz), 1.41 (12 H, s), 1.46 (3 H, s), 1.64 (3
H, d J ) 6.2 Hz), 3.75-3.79 (2 H, m), 3.95-4.05 (2 H, bs),
5.41-5.60 (4 H, m). Anal. Calcd for C30H59NO5Si2: C; 63.22,
H; 10.43, N; 2.46. Found: C; 63.27, H; 10.49, N; 2.39.
(4S ,5S )-3-(t er t -B u t o x y c a r b o n y l)-2,2-d i m e t h y l-4-
[(1R,2S,3S,4S,5S,6R)-3,4-b is-[(ter t-b u t yld im et h ylsilyl)-
oxy]-1,2,5,6-t et r a h yd r oxylh ep t yl]-5-m et h yloxa zolid in e
(5.7). The procedure described above for tetrol 3.1 was
employed with 570 mg (0.96 mmol) of diene 5.6, 565 mg (4.80
mmol) of NMO, and 2.0 mL (0.20 mmol) of 0.1 M OsO4 in H2O
affording tetrol 5.7 (446 mg, 73%) as a white glassy solid after
chromatography along with a mixture of isomers (104 mg,
17%): mp 54-56 °C; [R]D -6.02 (c 1.03, CHCl3); IR 3452, 1663;
1H NMR (400 MHz) δ 0.13 (3 H, s), 0.15 (3 H, s), 0.16 (6 H, s),
0.88 (18 H, s), 1.22 (3 H, d, J ) 6.5 Hz), 1.32 (3H, d, J ) 6.4
Hz), 1.44 (3 H, s), 1.47 (9 H, s), 1.61 (3 H, s), 2.12 (1 H, bd, J
) 9.8 Hz), 3.56 (1 H, bs), 3.64 (1 H, t, J ) 8.5 Hz), 3.71 (1 H,
d, J ) 8.2 Hz), 3.76 (1 H, dd, J ) 2.6, 6.8 Hz), 3.79-3.98 (4 H,
m), 4.10 (1 H, bs), 4.27 (1 H, bs), 4.37 (1 H, bd, J ) 5.4 Hz).
Anal. Calcd for C30H63NO9Si2: C; 56.42, H; 9.95, N; 2.20.
Found: C; 56.46, H; 9.98, N; 2.22.
6-Aceta m id o-6,8-d id eoxy-1,2:3,4-d i-O-isop r op ylid en e-
D-er yth r o-r-D-ga la cto-octop yr a n ose (6.7). A solution of the
N-BOC pyranoside 6.5 (11 mg, 0.03 mmol) in CH2Cl2-TFA
(1:1, 0.4 mL) was stirred at rt for 10 min, diluted with CH2-
Cl2, and then made basic with 5% NaOH. The aqueous layer
was extracted with CH2Cl2, and the combined extracts were
dried over Na2SO4 to give the crude amine 6.6 (7 mg, 82%):
1H NMR δ 1.15 (3 H, d, J ) 6.6 Hz), 1.31 (3 H, s), 1.34 (3 H,
Silyla ted La ctol 5.8. The procedure described above for
lactol 3.2 was employed with 606 mg (0.95 mmol) of tetrol 5.7