4130 J ournal of Medicinal Chemistry, 1996, Vol. 39, No. 20
Notes
1.61 (m, 6 H), 0.69-0.63 (m, 2 H) ppm; MS (EI) m/z 453 (M+).
tions of Ki values much less than half the enzyme concentration,
the usual lower limit for IC50 determination. Although we
cannot calculate the IC50 values using this method, since these
inhibitors are competitive (as shown by early kinetics work2 and
by crystal structures of inhibitors complexed with the active site
of HIV protease4-6), by definition the IC50 values are identical
to the Ki values.
Anal. (C23H23N3O5S) C, H, N.
Su p p or tin g In for m a tion Ava ila ble: Yields and spectral
data for compounds 2e, 4b-e, 5b-e, 6b-d , 7b-d , 8a -d , 9b-
d , and 10-12 (9 pages). Ordering information is given on any
current masthead page.
(10) The dramatic increase in binding affinity of the meta sulfon-
amide substituted derivatives is presumably due to the ability
of the sulfonamide aryl substituent, in this case the 4-cyano-2-
pyridyl group, to efficiently interact with the S3′ pocket of the
protease. In addition, X-ray crystal structures of similar com-
pounds have shown that the aryl group occupying the S3′ region
is able to form π-stacking interactions with the Arg 8 residue of
the enzyme. See ref 6.
(11) These synthetic procedures were adapted from routes developed
for related templates. Romero, D. L.; Tommasi, R. A.; J ana-
kiraman, M. N.; Strohbach, J . W.; Turner, S. R.; Biles, C.; Morge,
R. A.; J ohnson, P. D.; Aristoff, P. A.; Tomich, P. K.; Lynn, J . C.;
Horng, M.-M.; Chong, K.-T.; Hinshaw, R. R.; Howe, W. J .; Finzel,
B. C.; Watenpaugh, K. D.; Thaisrivongs, S. J . Med. Chem.,
submitted.
Refer en ces
(1) (a) Thaisrivongs, S. HIV Protease Inhibitors. Annu. Rep. Med.
Chem. 1994, 17, 133-144. (b) Redshaw, S. Inhibitors of HIV
Proteinase. Exp. Opin. Invest. Drugs 1994, 3, 273-286.
(2) Thaisrivongs, S.; Tomich, P. K.; Watenpaugh, K. D.; Chong, K.-
T.; Howe, W. J .; Yang, C.-P.; Strohbach, J . W.; Turner, S. T.;
McGrath, J . P.; Bohanon, M. J .; Lynn, J . C.; Mulichak, A. M.;
Spinelli, P. A.; Hinshaw, R. R.; Pagano, P. J .; Moon, J . B.;
Ruwart, M. J .; Wilkinson, K. F.; Rush, B. D.; Zipp, G. L.; Dalga,
R. J .; Schwende, F. J .; Howard, G. M.; Padbury, G. E.; Toth, L.
N.; Zhao, Z.; Koeplinger, K. A.; Kakuk, T. J .; Cole, S. L.; Zaya,
R. M.; Piper, R. C.; J effrey, P. Structure-Based Design of HIV
Protease Inhibitors: 4-Hydroxycoumarins and 4-Hydroxy-2-
pyrones as Non-peptidic Inhibitors. J . Med. Chem. 1994, 37,
3200-3204.
(12) In vitro enzyme kinetics for these compounds were performed
as described in ref 2.
(13) Energy-based conformational searching was carried out with the
Monte Carlo multiple minimum (MCMM) facility of Batchmin
v. 4.5,14 using the Amber* united atom forcefield, the PRCG
minimizer, and the surface area solvation approximation, as
implemented in BatchMin. A model of each compound was
constructed in the HIV-2 protease binding site, starting from
the X-ray crystal structure of the complex of 2c. Each model
was then subjected to 1000 steps of torsional variation of the
cycloalkyl ring bonds, followed by energy minimization of the
ligand within the field of an 8 Å nonmoving shell of protein
atoms, to arrive at an energy-ordered list of “bound” conforma-
tions for each ligand. The ligand model was then moved away
from the protein and the procedure was repeated. The nonmov-
ing shell of protein atoms contributed a solvation component to
the overall “unbound” energies, even though it did not contribute
an interaction energy with the ligand. The difference between
the lowest bound and unbound energies became the approximate
binding energy for that compound. The entire procedure was
repeated, using the X-ray structure of the complex of 2d as the
source of protein atom positions. The binding energies calcu-
lated in the two runs were then averaged.
(14) Mohamadi, F.; Richards, N. G. J .; Guida, W. C.; Liskamp, R.;
Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W.
C. MacroModel -- An Integrated Software System for Modeling
Organic and Bioorganic Molecules using Molecular Mechanics.
J . Comput. Chem. 1990, 11, 440-467.
(15) The intermediates for 10 and 11 were prepared using a tert-
butyl organozinc reagent instead of Et3Al. For the synthesis of
this reagent, see: J ubert, C.; Knochel, P. Preparation of Poly-
functional Nitro Olefins and Nitroalkanes Using the Copper-
Zinc Reagents RCu(CN)ZnI. J . Org. Chem. 1992, 57, 5431-
5438.
(3) For a review of the 4-hydroxycoumarins and related 4-hydroxy-
pyrone templates, see: Romines, K. R.; Chrusciel, R. A. 4-Hy-
droxypyrones and Related Templates as Nonpeptidic HIV Pro-
tease Inhibitors. Current Med. Chem. 1995, 2, 825-838 and
references cited therein.
(4) Romines, K. R.; Watenpaugh, K. D.; Tomich, P. K.; Howe, W.
J .; Morris, J . K.; Lovasz, K. D.; Mulichak, A. M.; Finzel, B. C.;
Lynn, J . C.; Horng, M. M.; Schwende, F. J .; Ruwart, M. J .; Zipp,
G. L.; Chong, K.-T.; Dolak, L. A.; Toth, L. N.; Howard, G. M.;
Rush, B. D.; Wilkinson, K. F.; Possert, P. L.; Dalga, R. J .;
Hinshaw, R. R. Use of Medium-Sized Cycloalkyl Rings to
Enhance Secondary Binding: Discovery of a New Class of HIV
Protease Inhibitors. J . Med. Chem. 1995, 38, 1884-1891.
(5) Romines, K. R.; Watenpaugh, K. D.; Howe, W. J .; Tomich, P.
K.; Lovasz, K. D.; Morris, J . K.; J anakiraman, M. N.; Lynn, J .
C.; Horng, M.-M.; Chong, K.-T.; Hinshaw, R. R.; Dolak, L. A.
Structure-Based Design of Nonpeptidic HIV Protease Inhibitors
from a Cyclooctylpyranone Lead Structure. J . Med. Chem. 1995,
38, 4463-4473.
(6) (a) Skulnick, H. I.; J ohnson, P. D.; Howe, W. J .; Tomich, P. K.;
Chong, K.-T.; Watenpaugh, K. D.; J anakiraman, M. N.; Dolak,
L. A.; McGrath, J . P.; Lynn, J . C.; Horng, M.-M.; Hinshaw, R.
R.; Zipp, G. L.; Ruwart, M. J .; Schwende, F. J .; Zhong, W.-Z.;
Padbury, G. E.; Dalga, R. J .; Shiou, L.; Possert, P. L.; Rush, B.
D.; Wilkinson, K. F.; Howard, G. M.; Toth, L. N.; Williams, M.
G.; Kakuk, T. J .; Cole, S. L.; Zaya, R. M.; Lovasz, K. D.; Morris,
J . K.; Romines, K. R.; Thaisrivongs, S.; Aristoff, P. A. J . Med.
Chem. 1995, 38, 4968-4971. (b) Skulnick, H. I.; J ohnson, P.
D.; Aristoff, P. A.; Morris, J . K.; Lovasz, K. D.; Howe, W. J .;
Watenpaugh, K. D.; J anakiraman, M. N.; Anderson, D. J .;
Reischer, R. J .; Schwartz, T. M.; Banitt, L. S.; Tomich, P. K.;
Lynn, J . C.; Horng, M.-M.; Chong, K.-T.; Hinshaw, R. R.; Dolak,
L. A.; Seest, E. P.; Schwende, F. J .; Rush, B. D.; Howard, G. M.;
Toth, L. N.; Wilkinson, K. R.; Kakuk, T. J .; J ohnson, C. W.; Cole,
S. L.; Zaya, R. M.; Zipp, G. L.; Possert, P. L.; Dalga, R. J .;
Romines, K. R. Structure-Based Design of Nonpeptidic HIV
Protease Inhibitors: The Sulfonamide-Substituted Cyclooc-
tylpyranones. J . Med. Chem., submitted.
(16) We have observed this effect in other templates.6b,7 It suggests
that there is an additional component in the binding interaction
between the S3′ region of the enzyme and the pyridyl sulfon-
amide substituent relative to the phenyl sulfonamide substitu-
ents, but the specific nature of such interactions is unknown at
this time.
(17) Antiviral activity was measured as described in Chong, K.-T.;
Pagano, P. J .; Hinshaw, R. R. Bisheteroarylpiperazine Reverse
Transcriptase Inhibitor in Combination with 3′-Azido-3′-Deoxy-
thymidine or 2′,3′-Dideoxycytidine Synergistically Inhibits Hu-
(7) J . W. Strohbach, S. R. Turner, and S. Thaisrivongs. Unpublished
Results.
(8) Effenberger, F.; Ziegler, T.; Scho¨nwa¨lder, K.-H.; Kesmarszky,
T.; Bauer, B. Die Acylierung von (Trimethylsilyl)enolethern mit
Malonyldichlorid -- Darstellung von 4-Hydroxy-2H-pyran-2-onen.
Chem. Ber. 1986, 119, 3394-3404.
(9) In vitro enzyme kinetics were performed with a fused recombi-
nant enzyme instead of the dimeric native protease to obviate
enzyme dissociation. To obtain these lower Ki values, assays
were incubated for 72 h at a lower enzyme concentration (0.2-
0.5 nM). Otherwise the assay conditions were as described in
ref 2. We note that this is not an initial rate assay, but an end-
point assay. In the absence of inhibitor, more than 99.5% of
the substrate is converted to product; the percent conversion in
the presence of inhibitor depends on inhibitor concentration. In
our assay, the end points are measured for up to 96 different
inhibitor concentrations, and the Ki value is then calculated
using an equation in which the enzyme rate equation is solved
as a function of substrate concentration. When many enzyme
concentrations are used, this technique allows accurate calcula-
man Immunodeficiency Virus Type
1 Replication In Vitro.
Antimicrob. Agents Chemother. 1994, 38, 288-293.
(18) It has been our experience that the translation of enzyme binding
affinity, as indicated by the Ki values, into antiviral activity in
cell culture cannot be directly correlated to any single factor,
such as protein binding, cell membrane permeability, or solubil-
ity, just to name a few. This issue continues to be an area of
ongoing research.
(19) Prepared using the procedure of Roblin and Clapp: Roblin, R.
O.; Clapp, J . W. J . Am. Chem. Soc. 1950, 72, 4890-4892.
(20) Forrest, H. S.; Walker, J . Chemotherapeutic Agents of the
Sulphone Type. Part V. 2:5-Disubstituted Derivatives of Pyr-
idine. The Preparation of Heterocyclic Sulfonamides. J . Chem.
Soc. 1948, 1939-1945.
J M960296C